An exploratory decision tree analysis to predict cardiovascular disease risk in African American women.

体质指数 医学 人口学 风险因素 多元统计 可行走性 递归分区 决策树 疾病 多元分析 老年学 环境卫生 内科学 物理疗法 统计 计算机科学 体力活动 数学 人工智能 社会学
作者
Heather J. Leach,Daniel P. O’Connor,Richard J. Simpson,Hanadi S. Rifai,Scherezade K. Mama,Rebecca E. Lee
出处
期刊:Health Psychology [American Psychological Association]
卷期号:35 (4): 397-402 被引量:19
标识
DOI:10.1037/hea0000267
摘要

African American (AA) women are at greater risk for cardiovascular disease (CVD) compared to White women, which can be attributed to disparities in risk factors. The built environment may contribute to improving CVD risk factors by increasing physical activity (PA). This study used recursive partitioning, a multivariate decision tree risk classification approach, to determine which built environment characteristics contributed to the classification of AA women as having 4 or more CVD risk factors at optimal levels.Recursive partitioning has the ability to detect interactions and does not have sample size limitations to detect effects. The Classification and Regression Trees (CR&T) growing method was used to group participants as having 4 or more versus 3 or fewer risk factors at optimal levels. Risk factors were smoking, body mass index (BMI), PA, healthy diet, cholesterol, glucose, and blood pressure. Built environment predictors were presence and quality of neighborhood PA resources (PARs), walkability, traffic safety, and crime.Participants (N = 30, mean age of 54.1 ± 7.5) all had at least 1 risk factor at the optimal level, none had all 7, and 66.7% had 4 or more risk factors at optimal levels. The CR&T identified participants with few, low-quality neighborhood PARs and who were older than 55 as least likely to have 4 or more CVD risk factors at optimal levels.Being younger than 55 years old and having many, high-quality neighborhood PARs may predict lower risk for CVD in AA women. Results should be used in future studies with larger sample sizes to inform logistic regression models. (PsycINFO Database Record

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡沈焕然完成签到,获得积分20
刚刚
乐观鑫鹏发布了新的文献求助10
刚刚
catherine发布了新的文献求助20
刚刚
1秒前
费老五完成签到 ,获得积分10
1秒前
所所应助黎金鑫采纳,获得10
1秒前
2秒前
黄柠檬完成签到,获得积分10
2秒前
柴柴柴完成签到,获得积分20
3秒前
CipherSage应助困困酱采纳,获得10
3秒前
香蕉觅云应助MT采纳,获得10
3秒前
3秒前
Jasper应助亚铁氰化钾采纳,获得10
3秒前
CodeCraft应助Annie采纳,获得30
4秒前
斯文败类应助能干雁凡采纳,获得10
5秒前
5秒前
无极微光应助开朗颜演采纳,获得20
5秒前
微笑向卉发布了新的文献求助10
6秒前
6秒前
SciGPT应助徐爱琳采纳,获得10
6秒前
7秒前
刘威发布了新的文献求助10
7秒前
搞怪的若灵完成签到,获得积分10
7秒前
王了了发布了新的文献求助10
8秒前
8秒前
活力菠萝发布了新的文献求助10
8秒前
zzrg发布了新的文献求助10
9秒前
9秒前
yufeizhle完成签到 ,获得积分10
9秒前
10秒前
10秒前
丘比特应助bbbbhr采纳,获得10
10秒前
所所应助孤巷的猫采纳,获得10
10秒前
Mississippiecho完成签到,获得积分10
11秒前
11秒前
小蘑菇应助欢喜的不尤采纳,获得10
11秒前
Thi发布了新的文献求助10
11秒前
小易发布了新的文献求助10
11秒前
充电宝应助nn采纳,获得10
11秒前
Dali应助chegen采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712