An exploratory decision tree analysis to predict cardiovascular disease risk in African American women.

体质指数 医学 人口学 风险因素 多元统计 可行走性 递归分区 决策树 疾病 多元分析 老年学 环境卫生 内科学 物理疗法 统计 计算机科学 体力活动 数学 人工智能 社会学
作者
Heather J. Leach,Daniel P. O’Connor,Richard J. Simpson,Hanadi S. Rifai,Scherezade K. Mama,Rebecca E. Lee
出处
期刊:Health Psychology [American Psychological Association]
卷期号:35 (4): 397-402 被引量:19
标识
DOI:10.1037/hea0000267
摘要

African American (AA) women are at greater risk for cardiovascular disease (CVD) compared to White women, which can be attributed to disparities in risk factors. The built environment may contribute to improving CVD risk factors by increasing physical activity (PA). This study used recursive partitioning, a multivariate decision tree risk classification approach, to determine which built environment characteristics contributed to the classification of AA women as having 4 or more CVD risk factors at optimal levels.Recursive partitioning has the ability to detect interactions and does not have sample size limitations to detect effects. The Classification and Regression Trees (CR&T) growing method was used to group participants as having 4 or more versus 3 or fewer risk factors at optimal levels. Risk factors were smoking, body mass index (BMI), PA, healthy diet, cholesterol, glucose, and blood pressure. Built environment predictors were presence and quality of neighborhood PA resources (PARs), walkability, traffic safety, and crime.Participants (N = 30, mean age of 54.1 ± 7.5) all had at least 1 risk factor at the optimal level, none had all 7, and 66.7% had 4 or more risk factors at optimal levels. The CR&T identified participants with few, low-quality neighborhood PARs and who were older than 55 as least likely to have 4 or more CVD risk factors at optimal levels.Being younger than 55 years old and having many, high-quality neighborhood PARs may predict lower risk for CVD in AA women. Results should be used in future studies with larger sample sizes to inform logistic regression models. (PsycINFO Database Record
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
研究生end应助王赟晖采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
风凌发布了新的文献求助10
刚刚
李爱国应助素色之美采纳,获得10
刚刚
小青椒应助科研通管家采纳,获得150
刚刚
ding应助顺利念双采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
善学以致用应助愿713采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
lilili应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科目三应助hsc采纳,获得10
1秒前
1秒前
1秒前
大鱼发布了新的文献求助10
1秒前
魔幻大有完成签到,获得积分10
1秒前
纯真绿蕊完成签到,获得积分10
2秒前
逢啊完成签到,获得积分20
2秒前
bkagyin应助学子采纳,获得10
3秒前
luojimao完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
李鑫完成签到,获得积分10
3秒前
潮哈哈耶完成签到,获得积分10
4秒前
科研通AI5应助顺心的翠丝采纳,获得30
4秒前
5秒前
5秒前
5秒前
6秒前
爱lx完成签到,获得积分10
6秒前
7秒前
无花果应助风凌采纳,获得10
7秒前
田様应助纯真的笑珊采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103