An exploratory decision tree analysis to predict cardiovascular disease risk in African American women.

体质指数 医学 人口学 风险因素 多元统计 可行走性 递归分区 决策树 疾病 多元分析 老年学 环境卫生 内科学 物理疗法 统计 计算机科学 体力活动 数学 人工智能 社会学
作者
Heather J. Leach,Daniel P. O’Connor,Richard J. Simpson,Hanadi S. Rifai,Scherezade K. Mama,Rebecca E. Lee
出处
期刊:Health Psychology [American Psychological Association]
卷期号:35 (4): 397-402 被引量:19
标识
DOI:10.1037/hea0000267
摘要

African American (AA) women are at greater risk for cardiovascular disease (CVD) compared to White women, which can be attributed to disparities in risk factors. The built environment may contribute to improving CVD risk factors by increasing physical activity (PA). This study used recursive partitioning, a multivariate decision tree risk classification approach, to determine which built environment characteristics contributed to the classification of AA women as having 4 or more CVD risk factors at optimal levels.Recursive partitioning has the ability to detect interactions and does not have sample size limitations to detect effects. The Classification and Regression Trees (CR&T) growing method was used to group participants as having 4 or more versus 3 or fewer risk factors at optimal levels. Risk factors were smoking, body mass index (BMI), PA, healthy diet, cholesterol, glucose, and blood pressure. Built environment predictors were presence and quality of neighborhood PA resources (PARs), walkability, traffic safety, and crime.Participants (N = 30, mean age of 54.1 ± 7.5) all had at least 1 risk factor at the optimal level, none had all 7, and 66.7% had 4 or more risk factors at optimal levels. The CR&T identified participants with few, low-quality neighborhood PARs and who were older than 55 as least likely to have 4 or more CVD risk factors at optimal levels.Being younger than 55 years old and having many, high-quality neighborhood PARs may predict lower risk for CVD in AA women. Results should be used in future studies with larger sample sizes to inform logistic regression models. (PsycINFO Database Record
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pu发布了新的文献求助10
1秒前
spyspy发布了新的文献求助20
3秒前
3秒前
呼呼完成签到 ,获得积分10
6秒前
6秒前
杨秀玲发布了新的文献求助10
7秒前
7秒前
leslie花花发布了新的文献求助10
7秒前
8秒前
鹏虫虫完成签到 ,获得积分10
9秒前
10秒前
可爱的函函应助牛牛采纳,获得10
12秒前
能干的茗发布了新的文献求助10
13秒前
欧阳正义发布了新的文献求助10
14秒前
14秒前
清脆南蕾发布了新的文献求助10
15秒前
852应助tomorrow9采纳,获得10
16秒前
凉薄少年应助乐观碧彤采纳,获得10
16秒前
李爱国应助夔kk采纳,获得10
17秒前
凉薄少年应助刘先生采纳,获得10
18秒前
xxttt完成签到,获得积分10
24秒前
26秒前
xunxunmimi完成签到,获得积分10
27秒前
天天快乐应助明明明采纳,获得30
27秒前
啦啦啦完成签到,获得积分10
28秒前
谢逸轩发布了新的文献求助10
29秒前
英姑应助行路人采纳,获得20
30秒前
jiangwei完成签到 ,获得积分10
30秒前
完美世界应助涵泽采纳,获得10
32秒前
35秒前
纯真的觅露完成签到,获得积分20
35秒前
sjdghgdhs发布了新的文献求助10
36秒前
Tony12完成签到,获得积分10
36秒前
星星轨迹发布了新的文献求助10
39秒前
谢逸轩完成签到,获得积分10
39秒前
39秒前
艺涵发布了新的文献求助10
40秒前
SciGPT应助叶小文采纳,获得10
40秒前
cyn0762发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498