An exploratory decision tree analysis to predict cardiovascular disease risk in African American women.

体质指数 医学 人口学 风险因素 多元统计 可行走性 递归分区 决策树 疾病 多元分析 老年学 环境卫生 内科学 物理疗法 统计 计算机科学 体力活动 数学 人工智能 社会学
作者
Heather J. Leach,Daniel P. O’Connor,Richard J. Simpson,Hanadi S. Rifai,Scherezade K. Mama,Rebecca E. Lee
出处
期刊:Health Psychology [American Psychological Association]
卷期号:35 (4): 397-402 被引量:19
标识
DOI:10.1037/hea0000267
摘要

African American (AA) women are at greater risk for cardiovascular disease (CVD) compared to White women, which can be attributed to disparities in risk factors. The built environment may contribute to improving CVD risk factors by increasing physical activity (PA). This study used recursive partitioning, a multivariate decision tree risk classification approach, to determine which built environment characteristics contributed to the classification of AA women as having 4 or more CVD risk factors at optimal levels.Recursive partitioning has the ability to detect interactions and does not have sample size limitations to detect effects. The Classification and Regression Trees (CR&T) growing method was used to group participants as having 4 or more versus 3 or fewer risk factors at optimal levels. Risk factors were smoking, body mass index (BMI), PA, healthy diet, cholesterol, glucose, and blood pressure. Built environment predictors were presence and quality of neighborhood PA resources (PARs), walkability, traffic safety, and crime.Participants (N = 30, mean age of 54.1 ± 7.5) all had at least 1 risk factor at the optimal level, none had all 7, and 66.7% had 4 or more risk factors at optimal levels. The CR&T identified participants with few, low-quality neighborhood PARs and who were older than 55 as least likely to have 4 or more CVD risk factors at optimal levels.Being younger than 55 years old and having many, high-quality neighborhood PARs may predict lower risk for CVD in AA women. Results should be used in future studies with larger sample sizes to inform logistic regression models. (PsycINFO Database Record
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鲸鱼发布了新的文献求助10
1秒前
XX发布了新的文献求助10
1秒前
小马甲应助小趴蔡采纳,获得10
3秒前
陌浅然发布了新的文献求助10
3秒前
andrele完成签到,获得积分10
3秒前
TJW发布了新的文献求助10
3秒前
领导范儿应助鱼头星星kk采纳,获得10
4秒前
li驳回了123PY应助
5秒前
发财达人发布了新的文献求助10
5秒前
搜集达人应助曾经二娘采纳,获得10
5秒前
8秒前
9秒前
10秒前
Yr发布了新的文献求助20
10秒前
落雁沙发布了新的文献求助10
11秒前
11秒前
Xenia发布了新的文献求助10
12秒前
14秒前
Jasper应助Swilder采纳,获得10
15秒前
无私念瑶发布了新的文献求助10
15秒前
小鲸鱼完成签到,获得积分10
15秒前
畅快新烟完成签到 ,获得积分10
15秒前
布伦希尔地完成签到,获得积分10
16秒前
16秒前
Zyyyh发布了新的文献求助10
16秒前
李在猛完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
hu发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
Evelyn100899发布了新的文献求助20
21秒前
科研通AI2S应助wuwuhu采纳,获得10
21秒前
Pauline发布了新的文献求助10
22秒前
之道发布了新的文献求助10
22秒前
西伯侯发布了新的文献求助10
22秒前
华仔应助111采纳,获得10
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484