Compressive Sampling Methods and their Implementation Issues

欠采样 压缩传感 奈奎斯特率 计算机科学 采样(信号处理) 奈奎斯特-香农抽样定理 电子工程 信号(编程语言) 信号重构 数字信号处理 模拟信号 信号处理 抽取 过采样 滤波器(信号处理) 电信 算法 工程类 带宽(计算) 计算机硬件 计算机视觉 程序设计语言
作者
Nikos Petrellis
出处
期刊:Recent Patents on Signal Processing [Bentham Science]
卷期号:2 (2): 127-139 被引量:4
标识
DOI:10.2174/2210686311202020127
摘要

The ultra wideband telecommunication systems require nowadays mixed signal front end modules like Analogto- Digital Converters with ever increasing cost in terms of speed, power consumption, die area and complexity if the Nyquist rate is respected. Since the signals in various applications are inherently sparse or compressible, a great attention has been recently given to systems that use under-sampling methods without significant information loss. These methods are covered by a signal processing branch known as Compressed (or Compressive) Sensing or Compressive Sampling. A Compressive Sampling approach is useful if it leads to a lower cost solution compared to the cost of the architecture that would be required if Nyquist sampling was adopted or if the signal frequency is so high that no appropriate Nyquist sampler is available at all. A number of recent Compressive Sampling patents will be reviewed in this article focusing on the feasibility of their implementation since the mathematical modeling that is often adopted is based on discrete input values and cannot be directly applied to the real world analog signals. Moreover, computational intensive optimization problems require to be solved in order to fully reconstruct the original input signal from a small number of samples. Keywords: Compressive sampling (sensing), undersampling, analog digital conversion, VLSI, DSP, Compressive Sampling , Compressive sensing, compressed sensing, compressive sampling methods, multi-band signals, distributed compressed sensing, signal processing, adaptive signal processing, analog-digital converter, ADC, analog projection, SC-CoSaMP method

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
淞淞于我完成签到 ,获得积分10
8秒前
花花发布了新的文献求助10
8秒前
灵巧的朝雪完成签到 ,获得积分10
10秒前
陈秋完成签到,获得积分10
12秒前
跳跃的鹏飞完成签到 ,获得积分0
17秒前
哥哥发布了新的文献求助10
17秒前
xgx984完成签到,获得积分10
18秒前
leemiii完成签到 ,获得积分10
36秒前
Lyw完成签到 ,获得积分10
40秒前
夕阳下仰望完成签到 ,获得积分10
42秒前
陌上完成签到 ,获得积分10
48秒前
单纯的小土豆完成签到 ,获得积分0
50秒前
guoxihan完成签到,获得积分10
59秒前
puritan完成签到 ,获得积分10
59秒前
沉静香氛完成签到 ,获得积分10
1分钟前
枯叶蝶完成签到 ,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
1分钟前
夜未央完成签到 ,获得积分10
1分钟前
DZS完成签到 ,获得积分10
1分钟前
wml发布了新的文献求助10
1分钟前
七厘米发布了新的文献求助10
1分钟前
506407完成签到,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分0
1分钟前
liukanhai完成签到,获得积分10
1分钟前
豆⑧完成签到,获得积分10
1分钟前
不劳而获完成签到 ,获得积分10
1分钟前
JUN完成签到,获得积分10
1分钟前
shacodow完成签到,获得积分10
1分钟前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
2分钟前
龙弟弟完成签到 ,获得积分10
2分钟前
没心没肺完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370