Compressive Sampling Methods and their Implementation Issues

欠采样 压缩传感 奈奎斯特率 计算机科学 采样(信号处理) 奈奎斯特-香农抽样定理 电子工程 信号(编程语言) 信号重构 数字信号处理 模拟信号 信号处理 抽取 过采样 滤波器(信号处理) 电信 算法 工程类 带宽(计算) 计算机硬件 计算机视觉 程序设计语言
作者
Nikos Petrellis
出处
期刊:Recent Patents on Signal Processing [Bentham Science]
卷期号:2 (2): 127-139 被引量:4
标识
DOI:10.2174/2210686311202020127
摘要

The ultra wideband telecommunication systems require nowadays mixed signal front end modules like Analogto- Digital Converters with ever increasing cost in terms of speed, power consumption, die area and complexity if the Nyquist rate is respected. Since the signals in various applications are inherently sparse or compressible, a great attention has been recently given to systems that use under-sampling methods without significant information loss. These methods are covered by a signal processing branch known as Compressed (or Compressive) Sensing or Compressive Sampling. A Compressive Sampling approach is useful if it leads to a lower cost solution compared to the cost of the architecture that would be required if Nyquist sampling was adopted or if the signal frequency is so high that no appropriate Nyquist sampler is available at all. A number of recent Compressive Sampling patents will be reviewed in this article focusing on the feasibility of their implementation since the mathematical modeling that is often adopted is based on discrete input values and cannot be directly applied to the real world analog signals. Moreover, computational intensive optimization problems require to be solved in order to fully reconstruct the original input signal from a small number of samples. Keywords: Compressive sampling (sensing), undersampling, analog digital conversion, VLSI, DSP, Compressive Sampling , Compressive sensing, compressed sensing, compressive sampling methods, multi-band signals, distributed compressed sensing, signal processing, adaptive signal processing, analog-digital converter, ADC, analog projection, SC-CoSaMP method

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英姑应助Annie采纳,获得10
2秒前
jiangjiang完成签到,获得积分10
3秒前
慕青应助mmmk采纳,获得30
5秒前
xuxingxing完成签到,获得积分10
5秒前
5秒前
5秒前
chenzi完成签到,获得积分20
6秒前
呱呱蛙完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Ztx发布了新的文献求助10
7秒前
冰茉莉发布了新的文献求助50
8秒前
wanci应助Marciu33采纳,获得10
8秒前
坚强乌龟完成签到,获得积分20
8秒前
元谷雪发布了新的文献求助10
9秒前
大力飞扬发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
深情安青应助和谐谷蕊采纳,获得10
14秒前
专注的问寒应助法外狂徒采纳,获得100
14秒前
15秒前
呱呱蛙发布了新的文献求助10
16秒前
16秒前
啊呜发布了新的文献求助10
17秒前
努力发文不会累完成签到,获得积分10
17秒前
明亮的颖完成签到,获得积分10
17秒前
17秒前
lyy驳回了CodeCraft应助
18秒前
jsw发布了新的文献求助10
18秒前
18秒前
专注的问寒应助坚强乌龟采纳,获得20
19秒前
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420