Compressive Sampling Methods and their Implementation Issues

欠采样 压缩传感 奈奎斯特率 计算机科学 采样(信号处理) 奈奎斯特-香农抽样定理 电子工程 信号(编程语言) 信号重构 数字信号处理 模拟信号 信号处理 抽取 过采样 滤波器(信号处理) 电信 算法 工程类 带宽(计算) 计算机硬件 计算机视觉 程序设计语言
作者
Nikos Petrellis
出处
期刊:Recent Patents on Signal Processing [Bentham Science]
卷期号:2 (2): 127-139 被引量:4
标识
DOI:10.2174/2210686311202020127
摘要

The ultra wideband telecommunication systems require nowadays mixed signal front end modules like Analogto- Digital Converters with ever increasing cost in terms of speed, power consumption, die area and complexity if the Nyquist rate is respected. Since the signals in various applications are inherently sparse or compressible, a great attention has been recently given to systems that use under-sampling methods without significant information loss. These methods are covered by a signal processing branch known as Compressed (or Compressive) Sensing or Compressive Sampling. A Compressive Sampling approach is useful if it leads to a lower cost solution compared to the cost of the architecture that would be required if Nyquist sampling was adopted or if the signal frequency is so high that no appropriate Nyquist sampler is available at all. A number of recent Compressive Sampling patents will be reviewed in this article focusing on the feasibility of their implementation since the mathematical modeling that is often adopted is based on discrete input values and cannot be directly applied to the real world analog signals. Moreover, computational intensive optimization problems require to be solved in order to fully reconstruct the original input signal from a small number of samples. Keywords: Compressive sampling (sensing), undersampling, analog digital conversion, VLSI, DSP, Compressive Sampling , Compressive sensing, compressed sensing, compressive sampling methods, multi-band signals, distributed compressed sensing, signal processing, adaptive signal processing, analog-digital converter, ADC, analog projection, SC-CoSaMP method

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
AdeleValenta应助科研通管家采纳,获得50
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
文武发布了新的文献求助10
2秒前
FashionBoy应助lsj采纳,获得10
2秒前
深情安青应助小羊采纳,获得10
2秒前
2秒前
urio发布了新的文献求助10
3秒前
3秒前
鲁卓林发布了新的文献求助10
4秒前
英俊的铭应助JOJO采纳,获得10
4秒前
SciGPT应助TYH采纳,获得10
5秒前
Taxwitted完成签到,获得积分10
5秒前
风雨无阻完成签到,获得积分10
6秒前
6秒前
傻傻的笑阳完成签到,获得积分20
6秒前
大大彬发布了新的文献求助10
6秒前
斯文败类应助旭东静静采纳,获得10
6秒前
stand应助τ涛采纳,获得10
7秒前
西蓝花战士完成签到 ,获得积分10
7秒前
天地一沙鸥发布了新的文献求助100
7秒前
科研小王发布了新的文献求助20
7秒前
jh完成签到 ,获得积分10
7秒前
daniu发布了新的文献求助10
8秒前
8秒前
xz完成签到,获得积分10
8秒前
YYYCCC完成签到,获得积分10
8秒前
9秒前
你阿姐发布了新的文献求助30
9秒前
9秒前
9秒前
学术小白发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
感性的荆关注了科研通微信公众号
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710924
求助须知:如何正确求助?哪些是违规求助? 5201614
关于积分的说明 15262765
捐赠科研通 4863420
什么是DOI,文献DOI怎么找? 2610723
邀请新用户注册赠送积分活动 1560911
关于科研通互助平台的介绍 1518506