Loading effect correction set up by supplementing CD measurement analysis with machine learning

光掩模 临界尺寸 计算机科学 过程(计算) 维数(图论) 比例(比率) 线性 度量(数据仓库) 光学接近校正 样品(材料) 可靠性工程 材料科学 数学 光学 工程类 电子工程 纳米技术 抵抗 物理 数据挖掘 图层(电子) 量子力学 纯数学 操作系统 热力学
作者
Christian Buergel,Martin Sczyrba,Clemens Utzny
标识
DOI:10.1117/12.2539821
摘要

With semiconductor technology approaching and exceeding 10 nm design rules the quality requirements for photomasks are continuously tightening. One of the crucial parameters is improved control of the critical dimension (CD) across the photomask. As long as linearity and through pitch effects are not involved, the quality measure is typically defined as CD uniformity. This parameter is normally measured on repeating structures of same size and shape, which are not necessarily placed in identical environments. Density dependent process effects, also called loading effects (LE), pose a challenge for the required CD control. There are several possible contributors to this kind of error within the mask manufacturing flow, such as etch driven loading effects, fogging effects during 50kV exposure and develop driven loading effects. All of these operate at different working ranges, starting at millimeters going down to only a few 100 μm scale. It is comparably easy to derive models for large scale phenomena like etch loading or fogging effects, in contrast to that it is not as straight forward to find suitable models for very short-range effects. A large amount of CD measurements taken by CD SEM is needed to identify such signals of low magnitude and short scales, which make the setup very resource intensive. Furthermore, this methodology requires artificial designs and test structures which aim to sample only the effect of interest. In this paper we present a strategy which combines CD SEM measurements from dedicated test masks with the results from regular product masks. The aim is the derivation and validation of the loading effect correction range and strength. In the first step the data from test masks is analyzed to set up the basic correction parameters. Following this, the approach is supplemented by product data where we combine mask CD and design data. The clear field distribution of the design is convoluted with respect to a hierarchy of length scales. This data is the input for a support vector machine analysis. Thus, we employ a flat machine learning algorithm. However, the input data has been set up to reflect multiple layers of convolution. This particular approach has been chosen, as each convolution length scale is associated with mask process properties, thus alleviating the burden of interpretation which typically mars the interpretation of models obtained by machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心小狗发布了新的文献求助10
刚刚
Potato123123完成签到 ,获得积分10
1秒前
浅出南完成签到,获得积分10
1秒前
Hi发布了新的文献求助10
1秒前
1秒前
1秒前
丸子完成签到,获得积分10
1秒前
2秒前
Ffan发布了新的文献求助30
2秒前
photogragher完成签到,获得积分10
3秒前
行者发布了新的文献求助10
4秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
大模型应助shen5920采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
诸怀曼发布了新的文献求助10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
老年陈皮完成签到,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
liny完成签到,获得积分20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
丰富若烟发布了新的文献求助20
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
Zx_1993应助科研通管家采纳,获得20
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342127
求助须知:如何正确求助?哪些是违规求助? 4478048
关于积分的说明 13938042
捐赠科研通 4374445
什么是DOI,文献DOI怎么找? 2403529
邀请新用户注册赠送积分活动 1396244
关于科研通互助平台的介绍 1368307