已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Loading effect correction set up by supplementing CD measurement analysis with machine learning

光掩模 临界尺寸 计算机科学 过程(计算) 维数(图论) 比例(比率) 线性 度量(数据仓库) 光学接近校正 样品(材料) 可靠性工程 材料科学 数学 光学 工程类 电子工程 纳米技术 抵抗 物理 数据挖掘 操作系统 热力学 纯数学 量子力学 图层(电子)
作者
Christian Buergel,Martin Sczyrba,Clemens Utzny
标识
DOI:10.1117/12.2539821
摘要

With semiconductor technology approaching and exceeding 10 nm design rules the quality requirements for photomasks are continuously tightening. One of the crucial parameters is improved control of the critical dimension (CD) across the photomask. As long as linearity and through pitch effects are not involved, the quality measure is typically defined as CD uniformity. This parameter is normally measured on repeating structures of same size and shape, which are not necessarily placed in identical environments. Density dependent process effects, also called loading effects (LE), pose a challenge for the required CD control. There are several possible contributors to this kind of error within the mask manufacturing flow, such as etch driven loading effects, fogging effects during 50kV exposure and develop driven loading effects. All of these operate at different working ranges, starting at millimeters going down to only a few 100 μm scale. It is comparably easy to derive models for large scale phenomena like etch loading or fogging effects, in contrast to that it is not as straight forward to find suitable models for very short-range effects. A large amount of CD measurements taken by CD SEM is needed to identify such signals of low magnitude and short scales, which make the setup very resource intensive. Furthermore, this methodology requires artificial designs and test structures which aim to sample only the effect of interest. In this paper we present a strategy which combines CD SEM measurements from dedicated test masks with the results from regular product masks. The aim is the derivation and validation of the loading effect correction range and strength. In the first step the data from test masks is analyzed to set up the basic correction parameters. Following this, the approach is supplemented by product data where we combine mask CD and design data. The clear field distribution of the design is convoluted with respect to a hierarchy of length scales. This data is the input for a support vector machine analysis. Thus, we employ a flat machine learning algorithm. However, the input data has been set up to reflect multiple layers of convolution. This particular approach has been chosen, as each convolution length scale is associated with mask process properties, thus alleviating the burden of interpretation which typically mars the interpretation of models obtained by machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9999完成签到 ,获得积分10
刚刚
火山完成签到 ,获得积分10
刚刚
mumu完成签到 ,获得积分10
1秒前
ZadeAO完成签到,获得积分10
1秒前
脆脆鲨发布了新的文献求助10
1秒前
伊蕾娜完成签到 ,获得积分10
2秒前
hi_traffic完成签到,获得积分10
2秒前
颜林林完成签到,获得积分10
4秒前
4秒前
AnJaShua完成签到 ,获得积分10
4秒前
5秒前
青糯完成签到 ,获得积分10
5秒前
6秒前
idiom完成签到 ,获得积分10
6秒前
张元东完成签到 ,获得积分10
7秒前
额123没名完成签到 ,获得积分10
7秒前
8秒前
虚心海燕完成签到,获得积分10
8秒前
9秒前
xuli-888完成签到,获得积分10
9秒前
炸鸡完成签到 ,获得积分10
9秒前
Gahye完成签到 ,获得积分10
9秒前
坦率紫烟发布了新的文献求助10
10秒前
Ghiocel完成签到,获得积分10
10秒前
尉迟书兰完成签到 ,获得积分10
10秒前
小号完成签到,获得积分10
10秒前
老庄发布了新的文献求助10
10秒前
喝可乐的萝卜兔完成签到 ,获得积分10
11秒前
于夏旋完成签到,获得积分10
11秒前
真是麻烦完成签到 ,获得积分10
11秒前
tony发布了新的文献求助10
11秒前
哈哈哈完成签到 ,获得积分10
11秒前
成阳发布了新的文献求助10
11秒前
酷波er应助金润采纳,获得10
11秒前
学术霸王完成签到 ,获得积分10
12秒前
欣喜的人龙完成签到 ,获得积分10
13秒前
14秒前
学术垃圾完成签到 ,获得积分10
14秒前
xie完成签到 ,获得积分10
14秒前
优翎完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566455
求助须知:如何正确求助?哪些是违规求助? 3139157
关于积分的说明 9430760
捐赠科研通 2840013
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717778

今日热心研友

爱静静
40
科目三
30
外向的花瓣
20
NicoLi
20
领导范儿
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10