Loading effect correction set up by supplementing CD measurement analysis with machine learning

光掩模 临界尺寸 计算机科学 过程(计算) 维数(图论) 比例(比率) 线性 度量(数据仓库) 光学接近校正 样品(材料) 可靠性工程 材料科学 数学 光学 工程类 电子工程 纳米技术 抵抗 物理 数据挖掘 图层(电子) 量子力学 纯数学 操作系统 热力学
作者
Christian Buergel,Martin Sczyrba,Clemens Utzny
标识
DOI:10.1117/12.2539821
摘要

With semiconductor technology approaching and exceeding 10 nm design rules the quality requirements for photomasks are continuously tightening. One of the crucial parameters is improved control of the critical dimension (CD) across the photomask. As long as linearity and through pitch effects are not involved, the quality measure is typically defined as CD uniformity. This parameter is normally measured on repeating structures of same size and shape, which are not necessarily placed in identical environments. Density dependent process effects, also called loading effects (LE), pose a challenge for the required CD control. There are several possible contributors to this kind of error within the mask manufacturing flow, such as etch driven loading effects, fogging effects during 50kV exposure and develop driven loading effects. All of these operate at different working ranges, starting at millimeters going down to only a few 100 μm scale. It is comparably easy to derive models for large scale phenomena like etch loading or fogging effects, in contrast to that it is not as straight forward to find suitable models for very short-range effects. A large amount of CD measurements taken by CD SEM is needed to identify such signals of low magnitude and short scales, which make the setup very resource intensive. Furthermore, this methodology requires artificial designs and test structures which aim to sample only the effect of interest. In this paper we present a strategy which combines CD SEM measurements from dedicated test masks with the results from regular product masks. The aim is the derivation and validation of the loading effect correction range and strength. In the first step the data from test masks is analyzed to set up the basic correction parameters. Following this, the approach is supplemented by product data where we combine mask CD and design data. The clear field distribution of the design is convoluted with respect to a hierarchy of length scales. This data is the input for a support vector machine analysis. Thus, we employ a flat machine learning algorithm. However, the input data has been set up to reflect multiple layers of convolution. This particular approach has been chosen, as each convolution length scale is associated with mask process properties, thus alleviating the burden of interpretation which typically mars the interpretation of models obtained by machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叉叉桑完成签到 ,获得积分10
刚刚
1秒前
青山完成签到,获得积分10
2秒前
欢喜小蚂蚁完成签到 ,获得积分10
2秒前
xzn1123完成签到,获得积分0
2秒前
2秒前
不安愚志完成签到 ,获得积分10
3秒前
菠萝水手完成签到,获得积分10
3秒前
楠楠发布了新的文献求助10
4秒前
yanziwu94发布了新的文献求助10
5秒前
wanci应助科研搞我采纳,获得10
5秒前
6秒前
求助完成签到,获得积分0
6秒前
Kinn完成签到,获得积分10
6秒前
Kay76完成签到,获得积分10
7秒前
inana完成签到,获得积分10
7秒前
小虾米发布了新的文献求助10
7秒前
张瑞雪完成签到 ,获得积分10
7秒前
坦率的傲芙完成签到,获得积分10
8秒前
执着手套完成签到,获得积分10
8秒前
乘如关注了科研通微信公众号
8秒前
邻街完成签到,获得积分10
8秒前
9秒前
baobao完成签到,获得积分10
9秒前
不安海蓝完成签到,获得积分10
9秒前
10秒前
000完成签到,获得积分20
10秒前
yuxin完成签到,获得积分10
10秒前
专注的胡萝卜完成签到 ,获得积分10
11秒前
12秒前
可靠之玉完成签到,获得积分10
12秒前
heavennew完成签到,获得积分10
12秒前
张朝程完成签到,获得积分10
12秒前
yanziwu94完成签到,获得积分10
12秒前
花生王子完成签到 ,获得积分10
13秒前
zero完成签到,获得积分10
13秒前
初昀杭完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
薛妖怪完成签到,获得积分10
14秒前
一方通行完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597902
求助须知:如何正确求助?哪些是违规求助? 4009316
关于积分的说明 12410427
捐赠科研通 3688598
什么是DOI,文献DOI怎么找? 2033325
邀请新用户注册赠送积分活动 1066591
科研通“疑难数据库(出版商)”最低求助积分说明 951742