Loading effect correction set up by supplementing CD measurement analysis with machine learning

光掩模 临界尺寸 计算机科学 过程(计算) 维数(图论) 比例(比率) 线性 度量(数据仓库) 光学接近校正 样品(材料) 可靠性工程 材料科学 数学 光学 工程类 电子工程 纳米技术 抵抗 物理 数据挖掘 图层(电子) 量子力学 纯数学 操作系统 热力学
作者
Christian Buergel,Martin Sczyrba,Clemens Utzny
标识
DOI:10.1117/12.2539821
摘要

With semiconductor technology approaching and exceeding 10 nm design rules the quality requirements for photomasks are continuously tightening. One of the crucial parameters is improved control of the critical dimension (CD) across the photomask. As long as linearity and through pitch effects are not involved, the quality measure is typically defined as CD uniformity. This parameter is normally measured on repeating structures of same size and shape, which are not necessarily placed in identical environments. Density dependent process effects, also called loading effects (LE), pose a challenge for the required CD control. There are several possible contributors to this kind of error within the mask manufacturing flow, such as etch driven loading effects, fogging effects during 50kV exposure and develop driven loading effects. All of these operate at different working ranges, starting at millimeters going down to only a few 100 μm scale. It is comparably easy to derive models for large scale phenomena like etch loading or fogging effects, in contrast to that it is not as straight forward to find suitable models for very short-range effects. A large amount of CD measurements taken by CD SEM is needed to identify such signals of low magnitude and short scales, which make the setup very resource intensive. Furthermore, this methodology requires artificial designs and test structures which aim to sample only the effect of interest. In this paper we present a strategy which combines CD SEM measurements from dedicated test masks with the results from regular product masks. The aim is the derivation and validation of the loading effect correction range and strength. In the first step the data from test masks is analyzed to set up the basic correction parameters. Following this, the approach is supplemented by product data where we combine mask CD and design data. The clear field distribution of the design is convoluted with respect to a hierarchy of length scales. This data is the input for a support vector machine analysis. Thus, we employ a flat machine learning algorithm. However, the input data has been set up to reflect multiple layers of convolution. This particular approach has been chosen, as each convolution length scale is associated with mask process properties, thus alleviating the burden of interpretation which typically mars the interpretation of models obtained by machine learning approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助细腻思山采纳,获得10
1秒前
KingBy完成签到,获得积分10
1秒前
阳光向秋发布了新的文献求助10
1秒前
梦影发布了新的文献求助10
1秒前
2秒前
Licy发布了新的文献求助10
3秒前
搜集达人应助哲别采纳,获得10
3秒前
4秒前
酷波er应助风中的觅儿采纳,获得10
4秒前
852应助咸鱼悠悠采纳,获得10
6秒前
7秒前
8秒前
GD完成签到,获得积分10
8秒前
爆米花应助阳光向秋采纳,获得10
9秒前
waitamoment完成签到,获得积分10
9秒前
Panacea完成签到 ,获得积分10
12秒前
摆烂小鱼鱼完成签到 ,获得积分10
13秒前
踏雪寻梅发布了新的文献求助10
13秒前
张张完成签到,获得积分10
14秒前
上将小丁发布了新的文献求助10
14秒前
NexusExplorer应助饱满秋白采纳,获得10
14秒前
ding应助多情罡采纳,获得10
15秒前
15秒前
烟花应助gaojun采纳,获得10
15秒前
在水一方应助lx123采纳,获得10
15秒前
dxm发布了新的文献求助10
16秒前
16秒前
hhh发布了新的文献求助20
17秒前
Licy完成签到,获得积分10
17秒前
17秒前
咸鱼悠悠发布了新的文献求助10
20秒前
酒颜发布了新的文献求助10
21秒前
科研通AI6应助刻苦的雨莲采纳,获得10
22秒前
22秒前
香蕉觅云应助KingBy采纳,获得10
23秒前
23秒前
贤惠的紫菱完成签到 ,获得积分10
23秒前
酷波er应助限量款小辰采纳,获得10
24秒前
思源应助北小落采纳,获得10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508718
求助须知:如何正确求助?哪些是违规求助? 4603771
关于积分的说明 14487590
捐赠科研通 4538211
什么是DOI,文献DOI怎么找? 2486895
邀请新用户注册赠送积分活动 1469453
关于科研通互助平台的介绍 1441676