已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Loading effect correction set up by supplementing CD measurement analysis with machine learning

光掩模 临界尺寸 计算机科学 过程(计算) 维数(图论) 比例(比率) 线性 度量(数据仓库) 光学接近校正 样品(材料) 可靠性工程 材料科学 数学 光学 工程类 电子工程 纳米技术 抵抗 物理 数据挖掘 图层(电子) 量子力学 纯数学 操作系统 热力学
作者
Christian Buergel,Martin Sczyrba,Clemens Utzny
标识
DOI:10.1117/12.2539821
摘要

With semiconductor technology approaching and exceeding 10 nm design rules the quality requirements for photomasks are continuously tightening. One of the crucial parameters is improved control of the critical dimension (CD) across the photomask. As long as linearity and through pitch effects are not involved, the quality measure is typically defined as CD uniformity. This parameter is normally measured on repeating structures of same size and shape, which are not necessarily placed in identical environments. Density dependent process effects, also called loading effects (LE), pose a challenge for the required CD control. There are several possible contributors to this kind of error within the mask manufacturing flow, such as etch driven loading effects, fogging effects during 50kV exposure and develop driven loading effects. All of these operate at different working ranges, starting at millimeters going down to only a few 100 μm scale. It is comparably easy to derive models for large scale phenomena like etch loading or fogging effects, in contrast to that it is not as straight forward to find suitable models for very short-range effects. A large amount of CD measurements taken by CD SEM is needed to identify such signals of low magnitude and short scales, which make the setup very resource intensive. Furthermore, this methodology requires artificial designs and test structures which aim to sample only the effect of interest. In this paper we present a strategy which combines CD SEM measurements from dedicated test masks with the results from regular product masks. The aim is the derivation and validation of the loading effect correction range and strength. In the first step the data from test masks is analyzed to set up the basic correction parameters. Following this, the approach is supplemented by product data where we combine mask CD and design data. The clear field distribution of the design is convoluted with respect to a hierarchy of length scales. This data is the input for a support vector machine analysis. Thus, we employ a flat machine learning algorithm. However, the input data has been set up to reflect multiple layers of convolution. This particular approach has been chosen, as each convolution length scale is associated with mask process properties, thus alleviating the burden of interpretation which typically mars the interpretation of models obtained by machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
vanHaren完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
10秒前
11秒前
11秒前
开拖拉机的芍药完成签到 ,获得积分10
12秒前
12秒前
13秒前
我是老大应助昧冒冰采纳,获得10
14秒前
麦乐酷发布了新的文献求助10
15秒前
15秒前
17秒前
鱼鱼完成签到 ,获得积分10
18秒前
18秒前
zzq完成签到 ,获得积分10
20秒前
生椰拿铁死忠粉完成签到,获得积分0
20秒前
共享精神应助专一的大神采纳,获得10
21秒前
22秒前
爆米花应助洋洋采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
24秒前
Kei应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
Yini应助科研通管家采纳,获得30
24秒前
orixero应助科研通管家采纳,获得10
24秒前
Kei应助科研通管家采纳,获得10
24秒前
天黑不打烊完成签到,获得积分10
25秒前
26秒前
利物浦996发布了新的文献求助10
31秒前
搜集达人应助炙热芯采纳,获得10
32秒前
32秒前
健壮慕梅完成签到,获得积分10
33秒前
34秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482