Loading effect correction set up by supplementing CD measurement analysis with machine learning

光掩模 临界尺寸 计算机科学 过程(计算) 维数(图论) 比例(比率) 线性 度量(数据仓库) 光学接近校正 样品(材料) 可靠性工程 材料科学 数学 光学 工程类 电子工程 纳米技术 抵抗 物理 数据挖掘 图层(电子) 量子力学 纯数学 操作系统 热力学
作者
Christian Buergel,Martin Sczyrba,Clemens Utzny
标识
DOI:10.1117/12.2539821
摘要

With semiconductor technology approaching and exceeding 10 nm design rules the quality requirements for photomasks are continuously tightening. One of the crucial parameters is improved control of the critical dimension (CD) across the photomask. As long as linearity and through pitch effects are not involved, the quality measure is typically defined as CD uniformity. This parameter is normally measured on repeating structures of same size and shape, which are not necessarily placed in identical environments. Density dependent process effects, also called loading effects (LE), pose a challenge for the required CD control. There are several possible contributors to this kind of error within the mask manufacturing flow, such as etch driven loading effects, fogging effects during 50kV exposure and develop driven loading effects. All of these operate at different working ranges, starting at millimeters going down to only a few 100 μm scale. It is comparably easy to derive models for large scale phenomena like etch loading or fogging effects, in contrast to that it is not as straight forward to find suitable models for very short-range effects. A large amount of CD measurements taken by CD SEM is needed to identify such signals of low magnitude and short scales, which make the setup very resource intensive. Furthermore, this methodology requires artificial designs and test structures which aim to sample only the effect of interest. In this paper we present a strategy which combines CD SEM measurements from dedicated test masks with the results from regular product masks. The aim is the derivation and validation of the loading effect correction range and strength. In the first step the data from test masks is analyzed to set up the basic correction parameters. Following this, the approach is supplemented by product data where we combine mask CD and design data. The clear field distribution of the design is convoluted with respect to a hierarchy of length scales. This data is the input for a support vector machine analysis. Thus, we employ a flat machine learning algorithm. However, the input data has been set up to reflect multiple layers of convolution. This particular approach has been chosen, as each convolution length scale is associated with mask process properties, thus alleviating the burden of interpretation which typically mars the interpretation of models obtained by machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助宁姚采纳,获得10
刚刚
1秒前
2秒前
chiii完成签到,获得积分10
3秒前
高冷的呆呆鱼完成签到,获得积分10
3秒前
吖嘿吖嘿发布了新的文献求助10
4秒前
诚心绿兰完成签到 ,获得积分10
5秒前
avalanche应助111111采纳,获得50
6秒前
6秒前
6秒前
我是老大应助小萝卜采纳,获得10
8秒前
Akim应助小牛马阿欢采纳,获得10
8秒前
LL关闭了LL文献求助
9秒前
张静完成签到,获得积分10
10秒前
下文献完成签到,获得积分10
11秒前
11秒前
11秒前
搜集达人应助Luffy采纳,获得10
13秒前
14秒前
14秒前
zzznznnn完成签到,获得积分10
14秒前
sc发布了新的文献求助10
14秒前
欣喜小松鼠应助FPW采纳,获得10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
一个小胖子完成签到,获得积分10
17秒前
18秒前
年轻的安萱完成签到,获得积分10
18秒前
寻道图强应助殷勤的香魔采纳,获得30
18秒前
小萝卜发布了新的文献求助10
19秒前
寻道图强应助风清扬采纳,获得30
19秒前
李爱国应助sc采纳,获得10
20秒前
momo完成签到,获得积分10
21秒前
上官若男应助虚心半莲采纳,获得10
21秒前
22秒前
22秒前
寒战完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434405
求助须知:如何正确求助?哪些是违规求助? 4546699
关于积分的说明 14203825
捐赠科研通 4466675
什么是DOI,文献DOI怎么找? 2448251
邀请新用户注册赠送积分活动 1439079
关于科研通互助平台的介绍 1415956