已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Domain Adaption for Knowledge Tracing

追踪 计算机科学 领域知识 领域(数学分析) 适应(眼睛) 人工智能 数学 程序设计语言 光学 物理 数学分析
作者
Song Cheng,Qi Liu,Enhong Chen
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2001.04841
摘要

With the rapid development of online education system, knowledge tracing which aims at predicting students' knowledge state is becoming a critical and fundamental task in personalized education. Traditionally, existing methods are domain-specified. However, there are a larger number of domains (e.g., subjects, schools) in the real world and the lacking of data in some domains, how to utilize the knowledge and information in other domains to help train a knowledge tracing model for target domains is increasingly important. We refer to this problem as domain adaptation for knowledge tracing (DAKT) which contains two aspects: (1) how to achieve great knowledge tracing performance in each domain. (2) how to transfer good performed knowledge tracing model between domains. To this end, in this paper, we propose a novel adaptable framework, namely adaptable knowledge tracing (AKT) to address the DAKT problem. Specifically, for the first aspect, we incorporate the educational characteristics (e.g., slip, guess, question texts) based on the deep knowledge tracing (DKT) to obtain a good performed knowledge tracing model. For the second aspect, we propose and adopt three domain adaptation processes. First, we pre-train an auto-encoder to select useful source instances for target model training. Second, we minimize the domain-specific knowledge state distribution discrepancy under maximum mean discrepancy (MMD) measurement to achieve domain adaptation. Third, we adopt fine-tuning to deal with the problem that the output dimension of source and target domain are different to make the model suitable for target domains. Extensive experimental results on two private datasets and seven public datasets clearly prove the effectiveness of AKT for great knowledge tracing performance and its superior transferable ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的大白菜完成签到 ,获得积分20
刚刚
大个应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
杳鸢应助科研通管家采纳,获得50
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得30
1秒前
1秒前
4秒前
Sinner发布了新的文献求助10
4秒前
星空完成签到 ,获得积分10
5秒前
jin发布了新的文献求助10
5秒前
6秒前
Masaccy完成签到,获得积分10
6秒前
南兮发布了新的文献求助10
6秒前
6秒前
溧子呀发布了新的文献求助10
8秒前
头真的很大完成签到 ,获得积分10
10秒前
12秒前
zhenzheng完成签到 ,获得积分10
14秒前
晏图完成签到,获得积分10
15秒前
毛豆应助Yu采纳,获得10
15秒前
科研通AI2S应助Cancellerzz采纳,获得10
16秒前
17秒前
18秒前
开心元霜完成签到 ,获得积分10
19秒前
cc应助zjcomposite采纳,获得10
20秒前
小牧鱼完成签到,获得积分10
21秒前
江河发布了新的文献求助10
22秒前
Sinner完成签到,获得积分10
22秒前
23秒前
23秒前
俭朴的跳跳糖完成签到 ,获得积分10
25秒前
26秒前
啦啦啦啦完成签到,获得积分10
26秒前
26秒前
27秒前
火星上的菲鹰应助Yu采纳,获得10
28秒前
cocolu应助Tana采纳,获得10
29秒前
ljy阿完成签到 ,获得积分10
31秒前
31秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417333
求助须知:如何正确求助?哪些是违规求助? 3018956
关于积分的说明 8886126
捐赠科研通 2706477
什么是DOI,文献DOI怎么找? 1484297
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681110