化学
质谱法
离子阱
分析化学(期刊)
分光计
光圈(计算机存储器)
离子
存水弯(水管)
光学
色谱法
物理
声学
气象学
有机化学
作者
Xinming Huo,Xuanyu Zhu,Fei Tang,Jian Zhang,Xiaohua Zhang,Quan Yu,Xiaohao Wang
标识
DOI:10.1021/acs.analchem.9b04824
摘要
In the range of miniature mass spectrometers, the miniature ion trap mass spectrometer with continuous atmospheric pressure interface (CAPI) shows good performance potential and advantages due to its excellent sensitivity and analysis speed. However, in previous cases, placing the ion trap directly near the skimmer aperture means it will suffer high gas shock, which may affect performance. In this study, an improved miniature CAPI ion trap mass spectrometer was developed by gas flow optimization. According to the experimental results, excessive gas flow affects stability and resolution. The impact of the gas flow can be effectively reduced by reducing the inner diameter of the skimmer and adding an additional lens element to move the ion trap away from the skimmer aperture. However, this method will affect the sensitivity of the instrument to some extent, so a discontinuous subatmospheric pressure interface (DSPI) was developed to reduce the gas flow effects and improve the comprehensive performance. When using the DSPI system with a 0.4 mm skimmer and entrance lens, the resolution for roxithromycin was up to 2800 at a scanning speed of 1015 Th/s, which was 3.4-fold higher that without DSPI. The dynamic range of concentration reached 4 orders of magnitude and the detection limit for repaglinide was as low as 1 ng/mL. This study offers a new approach to develop better miniature ion trap mass spectrometers and to extend their practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI