亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On the Disclosure of Promotion Value in Platforms with Learning Sellers

晋升(国际象棋) 价值(数学) 微观经济学 产品(数学) 贝叶斯博弈 经济 收入 经济盈余 信息的价值 时间范围 计算机科学 博弈论 数理经济学 政治学 序贯博弈 法学 数学 福利 会计 机器学习 几何学 政治 市场经济 财务
作者
Yonatan Gur,Gregory Macnamara,Ilan Morgenstern,Daniela Sabán
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3468674
摘要

We consider a platform facilitating trade between sellers and buyers with the objective of maximizing consumer surplus. Even though in many such marketplaces prices are set by revenue-maximizing sellers, platforms can influence prices through (i) price-dependent promotion policies that can increase demand for a product by featuring it in a prominent position on the webpage and (ii) the information revealed to sellers about the value of being promoted. Identifying effective joint information design and promotion policies is a challenging dynamic problem as sellers can sequentially learn the promotion value from sales observations and update prices accordingly. We introduce the notion of confounding promotion policies, which are designed to prevent a Bayesian seller from learning the promotion value (at the expense of the short-run loss of diverting some consumers from the best product offering). Leveraging these policies, we characterize the maximum long-run average consumer surplus that is achievable through joint information design and promotion policies when the seller sets prices myopically. We then construct a Bayesian Nash equilibrium in which the seller's best response to the platform's optimal policy is to price myopically in every period. Moreover, the equilibrium we identify is platform-optimal within the class of horizon-maximin equilibria, in which strategies are not predicated on precise knowledge of the horizon length, and are designed to maximize payoff over the worst-case horizon. Our analysis allows one to identify practical long-run average optimal platform policies in a broad range of demand models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
伶俐楷瑞完成签到,获得积分10
13秒前
29秒前
dgcyjvfb发布了新的文献求助10
34秒前
我爱高数发布了新的文献求助10
35秒前
小马甲应助lulubeans采纳,获得10
39秒前
42秒前
43秒前
我爱高数完成签到,获得积分10
48秒前
小刘恨香菜完成签到 ,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
54秒前
lulubeans发布了新的文献求助10
59秒前
lulubeans完成签到,获得积分20
1分钟前
1分钟前
1分钟前
领导范儿应助lulubeans采纳,获得30
1分钟前
自然涵易完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
自然涵易发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
研友_LJajX8发布了新的文献求助10
3分钟前
3分钟前
3分钟前
模糊中正应助luckss采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
luckss发布了新的文献求助10
4分钟前
Powder发布了新的文献求助10
4分钟前
4分钟前
西安浴日光能赵炜完成签到,获得积分10
4分钟前
5分钟前
那奇泡芙发布了新的文献求助10
5分钟前
小二郎应助那奇泡芙采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983996
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697