Disclosing Product Availability in Online Retail

盈利能力指数 业务 利用 数据库事务 匹配(统计) 营销 交易成本 产品(数学) 产品类别 广告 产业组织 计算机科学 财务 几何学 统计 数学 计算机安全 程序设计语言
作者
Eduard Calvo,Ruomeng Cui,Laura Wagner
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 427-447 被引量:55
标识
DOI:10.1287/msom.2020.0882
摘要

Problem definition: Online retailers disclose product availability to influence customer decisions as a form of pressure selling designed to compel customers to rush into a purchase. Can the revelation of this information drive sales and profitability? We study the effect of disclosing product availability on market outcomes—product sales and returns—and identify the contexts where this effect is most powerful. Academic/practical relevance: Increasing sell-out is key for online retailers to remain profitable in the presence of thin margins and complex operations. We provide insights into how their information-disclosure policy—something they can tailor at virtually no cost—can contribute to this important objective. Methodology: We collaborate with an online retailer to procure a year of transaction data on 190,696 products that span 1,290 brands and 472,980 customers. To causally identify our results, we use a generalized difference-in-differences design with matching that exploits one policy of the firm: it discloses product availability only for the last five units. Results: The disclosure of low product availability increases hourly sales—they grow by 13.6%—but these products are more likely to be returned—product return rates increase by 17.0%. Because returns are costly, we also study net sales—product hourly sales minus hourly returns—which increase by 12.5% after the retailer reveals low availability. Managerial implications: The positive effects on sales and profitability amplify over wide assortments and when low-availability signals are abundantly visible and disclosed for deeply discounted products whose sales season is about to end. In addition, we propose a data-driven policy that exploits these results by using machine learning to prescribe the timing of disclosure of scarcity signals in order to boost sales without spiking returns. History: This paper has been accepted as part of the 2019 Manufacturing & Service Operations Management Practice-Based Research Competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我的小伙伴应助feng采纳,获得10
刚刚
善学以致用应助feng采纳,获得10
刚刚
1秒前
1秒前
gaoww发布了新的文献求助10
1秒前
小二发布了新的文献求助10
5秒前
solobang发布了新的文献求助10
6秒前
CodeCraft应助Jocelyn7采纳,获得10
6秒前
秋之月完成签到,获得积分10
6秒前
7秒前
cheche关注了科研通微信公众号
7秒前
8秒前
科研小民工应助kento采纳,获得50
9秒前
完美世界应助小萌采纳,获得10
10秒前
10秒前
gaoww完成签到,获得积分10
10秒前
11秒前
WZ0904发布了新的文献求助10
11秒前
11秒前
lab完成签到 ,获得积分0
11秒前
小蘑菇应助今今采纳,获得10
12秒前
CodeCraft应助秋之月采纳,获得10
12秒前
I1waml完成签到 ,获得积分10
12秒前
12秒前
guygun完成签到,获得积分10
12秒前
zho发布了新的文献求助10
13秒前
独特亦旋发布了新的文献求助10
13秒前
14秒前
研友_LOqqmZ完成签到,获得积分10
15秒前
15秒前
英俊的铭应助文献查找采纳,获得10
15秒前
solobang发布了新的文献求助10
15秒前
Jasper应助老迟到的书雁采纳,获得10
18秒前
orixero应助小二采纳,获得10
18秒前
19秒前
19秒前
simple完成签到,获得积分10
19秒前
caoyy发布了新的文献求助10
19秒前
赵小可可可可完成签到,获得积分10
21秒前
小萌发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824