清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach

预言 人工智能 深度学习 计算机科学 机器学习 特征(语言学) 任务(项目管理) 融合机制 特征学习 人工神经网络 数据挖掘 融合 工程类 语言学 哲学 系统工程 脂质双层融合
作者
Zhenghua Chen,Min Wu,Rui Zhao,Feri Guretno,Ruqiang Yan,Xiaoli Li
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 2521-2531 被引量:516
标识
DOI:10.1109/tie.2020.2972443
摘要

For prognostics and health management of mechanical systems, a core task is to predict the machine remaining useful life (RUL). Currently, deep structures with automatic feature learning, such as long short-term memory (LSTM), have achieved great performances for the RUL prediction. However, the conventional LSTM network only uses the learned features at last time step for regression or classification, which is not efficient. Besides, some handcrafted features with domain knowledge may convey additional information for the prediction of RUL. It is thus highly motivated to integrate both those handcrafted features and automatically learned features for the RUL prediction. In this article, we propose an attention-based deep learning framework for machine's RUL prediction. The LSTM network is employed to learn sequential features from raw sensory data. Meanwhile, the proposed attention mechanism is able to learn the importance of features and time steps, and assign larger weights to more important ones. Moreover, a feature fusion framework is developed to combine the handcrafted features with automatically learned features to boost the performance of the RUL prediction. Extensive experiments have been conducted on two real datasets and experimental results demonstrate that our proposed approach outperforms the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
friend516完成签到 ,获得积分10
23秒前
30秒前
淡定自中发布了新的文献求助10
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
59秒前
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
CadoreK完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
linqitc发布了新的文献求助10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
ffff完成签到 ,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
lph完成签到 ,获得积分10
2分钟前
DJ_Tokyo完成签到,获得积分0
2分钟前
yaya完成签到 ,获得积分10
3分钟前
3分钟前
zhangsan完成签到,获得积分10
3分钟前
靓丽奇迹完成签到 ,获得积分10
3分钟前
4分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助舒适的大有采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
冰凌心恋完成签到,获得积分10
5分钟前
沉静问芙完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534541
求助须知:如何正确求助?哪些是违规求助? 4622572
关于积分的说明 14582648
捐赠科研通 4562692
什么是DOI,文献DOI怎么找? 2500318
邀请新用户注册赠送积分活动 1479848
关于科研通互助平台的介绍 1451059