Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach

预言 人工智能 深度学习 计算机科学 机器学习 特征(语言学) 任务(项目管理) 融合机制 特征学习 人工神经网络 数据挖掘 融合 工程类 语言学 哲学 系统工程 脂质双层融合
作者
Zhenghua Chen,Min Wu,Rui Zhao,Feri Guretno,Ruqiang Yan,Xiaoli Li
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 2521-2531 被引量:516
标识
DOI:10.1109/tie.2020.2972443
摘要

For prognostics and health management of mechanical systems, a core task is to predict the machine remaining useful life (RUL). Currently, deep structures with automatic feature learning, such as long short-term memory (LSTM), have achieved great performances for the RUL prediction. However, the conventional LSTM network only uses the learned features at last time step for regression or classification, which is not efficient. Besides, some handcrafted features with domain knowledge may convey additional information for the prediction of RUL. It is thus highly motivated to integrate both those handcrafted features and automatically learned features for the RUL prediction. In this article, we propose an attention-based deep learning framework for machine's RUL prediction. The LSTM network is employed to learn sequential features from raw sensory data. Meanwhile, the proposed attention mechanism is able to learn the importance of features and time steps, and assign larger weights to more important ones. Moreover, a feature fusion framework is developed to combine the handcrafted features with automatically learned features to boost the performance of the RUL prediction. Extensive experiments have been conducted on two real datasets and experimental results demonstrate that our proposed approach outperforms the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunoopp完成签到,获得积分10
刚刚
Fay完成签到,获得积分10
刚刚
满眼星辰发布了新的文献求助10
1秒前
靖旎发布了新的文献求助10
1秒前
1秒前
赘婿应助任性的天空采纳,获得10
1秒前
威武青亦完成签到,获得积分10
2秒前
大胆冰岚发布了新的文献求助10
3秒前
3秒前
英姑应助天狮星上的人采纳,获得10
4秒前
一水独流完成签到,获得积分10
4秒前
5秒前
ccm应助牛马学生采纳,获得10
5秒前
6秒前
李欣超完成签到 ,获得积分10
6秒前
7秒前
娷静完成签到 ,获得积分10
7秒前
Fay发布了新的文献求助10
8秒前
8秒前
8秒前
wxx完成签到,获得积分10
8秒前
9秒前
Aurora完成签到,获得积分10
9秒前
9秒前
嗷嗷小刺猬完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
Jello发布了新的文献求助10
12秒前
那你撒泼发布了新的文献求助10
12秒前
科研通AI6应助H8采纳,获得30
12秒前
13秒前
zzzz完成签到 ,获得积分10
13秒前
13秒前
14秒前
Doctor_Xie发布了新的文献求助10
14秒前
所所应助llllll采纳,获得10
14秒前
kento应助fxx采纳,获得50
15秒前
adheret完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548