已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigation of the chemical compounds in Pheretima aspergillum (E. Perrier) using a combination of mass spectral molecular networking and unsupervised substructure annotation topic modeling together with in silico fragmentation prediction

工作流程 化学 下部结构 生物信息学 碎片(计算) 质谱法 四极飞行时间 注释 化学空间 计算生物学 生物系统 计算机科学 人工智能 串联质谱法 色谱法 药物发现 数据库 操作系统 工程类 基因 生物 结构工程 生物化学
作者
Tao-Fang Cheng,Yuhao Zhang,Ji Ye,Hui‐Zi Jin,Weidong Zhang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:184: 113197-113197 被引量:18
标识
DOI:10.1016/j.jpba.2020.113197
摘要

Untargeted mass spectrometry analysis is one of the most challenging and meaningful steps in the rapid structural elucidation of the highly complex and diverse constituents of traditional Chinese medicine. Specifically, it is a laborious and time-consuming way to identify unknown compounds. Herein, a workflow was proposed to expedite the annotations of the chemical structures in Pheretima aspergillum (E. Perrier) (Di-Long, DL). First, ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) was performed to obtain the untargeted mass spectral data. Then, the spectral data were uploaded to the Global Natural Products Social Molecular Networking (GNPS) platform to create a network and extract the Mass2Motifs (co-occurring fragments and neutral losses) using unsupervised substructure annotation topic modeling (MS2LDA). Finally, a structural analysis was performed using the proposed workflow of MS2LDA in combination with mass spectral molecular networking and in silico fragmentation prediction. As a result, a total of 124 compounds from DL were effectively characterized, of which 89 (7 furan sulfonic acids, 57 phospholipids and 25 carboxamides) were identified as potentially new compounds from DL. The results presented in this article significantly improve the understanding of the chemical composition of DL and provide a solid scientific basis for the future study of the quality control, underlying pharmacology and mechanism of DL. Moreover, the proposed workflow was used for the first time to accelerate the annotations of unknown molecules from TCM. Furthermore, this workflow will increase the efficiency of characterizing the ‘unknown knowns’ and elucidation of the ‘unknown unknowns’ from TCM, which are crucial steps of discovering the natural product drugs in TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫葡萄发布了新的文献求助10
3秒前
落雨声完成签到 ,获得积分10
3秒前
xiongqi完成签到 ,获得积分10
5秒前
松间蓝雾发布了新的文献求助10
5秒前
小马甲应助隐形铃铛采纳,获得30
9秒前
紫葡萄完成签到,获得积分10
9秒前
xz完成签到 ,获得积分10
10秒前
YHF2完成签到,获得积分10
12秒前
韩寒完成签到 ,获得积分10
13秒前
小牧鱼完成签到,获得积分10
14秒前
15秒前
16秒前
ding应助神经蛙采纳,获得10
17秒前
丘比特应助学习。。采纳,获得10
17秒前
荔枝罐头关注了科研通微信公众号
21秒前
达布溜完成签到,获得积分10
22秒前
隐形铃铛发布了新的文献求助30
22秒前
几两发布了新的文献求助10
25秒前
啦啦啦完成签到 ,获得积分10
28秒前
29秒前
29秒前
31秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
Caroline发布了新的文献求助10
35秒前
Durant发布了新的文献求助10
36秒前
36秒前
37秒前
37秒前
41秒前
dnnnsns发布了新的文献求助30
41秒前
left_right发布了新的文献求助10
42秒前
学习。。发布了新的文献求助10
42秒前
MJQ完成签到,获得积分10
42秒前
hhh发布了新的文献求助10
42秒前
42秒前
LYZ发布了新的文献求助10
43秒前
44秒前
MJQ发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021