Using post‐column infused internal standard assisted quantitative metabolomics for establishing prediction models for breast cancer detection

代谢组学 乳腺癌 代谢物 代谢组 重复性 化学 传统PCI 色谱法 接收机工作特性 液相色谱-质谱法 癌症 内科学 肿瘤科 质谱法 医学 心肌梗塞
作者
Marisa Huang,Hung‐Yuan Li,Hsiao‐Wei Liao,Ching‐Hung Lin,Chin‐Yi Wang,Wen‐Hung Kuo,Ching‐Hua Kuo
出处
期刊:Rapid Communications in Mass Spectrometry [Wiley]
卷期号:34 (S1) 被引量:10
标识
DOI:10.1002/rcm.8581
摘要

Rationale Breast cancer is one of the most common cancers among women and its associated mortality is on the rise. Metabolomics is a potential strategy for breast cancer detection. The post‐column infused internal standard (PCI‐IS)‐assisted liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been demonstrated as an effective strategy for quantitative metabolomics. In this study, we evaluated the performance of targeted metabolomics with the PCI‐IS quantification method to identify women with breast cancer. Methods We used metabolite profiling to identify 17 dysregulated metabolites in breast cancer patients. Two LC/MS/MS methods in combination with the PCI‐IS strategy were developed to quantify these metabolites in plasma samples. Detection models were built through the analysis of plasma samples from 176 subjects consisting of healthy volunteers and breast cancer patients. Results Three isotope standards were selected as the PCI‐ISs for the metabolites. The accuracy was within 82.8–114.16%, except for citric acid and lactic acid at high concentration levels. The repeatability and intermediate precision were all lower than 15% relative standard deviation. We have identified several metabolites that indicate the presence of breast cancer. The area under the receiver operating characteristics (AUROC) curve, sensitivity and specificity of the linear combinations of metabolite concentrations and age with the highest AUROC were 0.940 (0.889–0.992), 88.4% and 94.2% for pre‐menopausal woman, respectively, and 0.828 (0.734–0.922), 73.5% and 85.1% for post‐menopausal women, respectively. Conclusions The targeted metabolomics with PCI‐IS quantification method successfully established prediction models for breast cancer detection. Further study is essential to validate these proposed markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速冥茗发布了新的文献求助10
1秒前
香蕉奎应助笨笨从凝采纳,获得10
3秒前
4秒前
5秒前
烟花应助西门吹雪9527采纳,获得10
5秒前
hnxxangel完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI2S应助estk采纳,获得10
8秒前
苞大米发布了新的文献求助10
9秒前
万能图书馆应助神奇阳光采纳,获得10
11秒前
syl发布了新的文献求助10
11秒前
piaopiao1122发布了新的文献求助10
11秒前
bobo发布了新的文献求助10
13秒前
13秒前
shinysparrow应助乐观的非笑采纳,获得100
15秒前
15秒前
15秒前
苞大米完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
piaopiao1122完成签到,获得积分10
21秒前
我是老大应助爹爹采纳,获得10
22秒前
小小猪完成签到,获得积分10
22秒前
24秒前
香蕉奎完成签到,获得积分20
24秒前
小旺旺发布了新的文献求助20
24秒前
27秒前
xiaowang发布了新的文献求助50
27秒前
28秒前
8R60d8应助科研通管家采纳,获得10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
在水一方应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
yu完成签到,获得积分10
29秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503