Fine-tuned variational mode decomposition for fault diagnosis of rotary machinery

峰度 带宽(计算) 信号(编程语言) 分解 分解法(排队论) 控制理论(社会学) 算法 信号处理 数学 断层(地质) 能量(信号处理) 模式(计算机接口) 计算机科学 统计 人工智能 计算机网络 生态学 雷达 电信 控制(管理) 地震学 生物 程序设计语言 地质学 操作系统
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:19 (5): 1453-1470 被引量:39
标识
DOI:10.1177/1475921719887496
摘要

Variational mode decomposition is a powerful signal processing technique that can adaptively decompose a multi-component signal into a number of modes, via solving an optimization problem. The optimal performance of this method in signal decomposition and avoiding of the mode mixing problem strictly relies on the true selection of decomposition parameters, that is, the number of extracted modes ( K) and the mode frequency bandwidth control parameter ( α). In the literature, the optimal values of these parameters are achieved by evaluating fault-related indices like kurtosis, but such an index is inefficient in judging the decomposition of healthy (without fault-related components), low-defective, and high-noise signals. In this research, a novel method called fine-tuned variational mode decomposition is proposed to determine the optimal values of decomposition parameters K and α, by judging the adaptive indices. In this proposed method, the optimal values of these parameters are obtained by minimizing the mean bandwidth of the extracted modes. In order to achieve these optimal values, the mean correlation coefficients between the adjacent modes and the energy loss coefficient between the original signal and the reconstructed signal, should not exceed of defined thresholds for optimal values. The proposed method is applied to the simulation signal and experimental ones collected from the automobile gearbox system. Comparing this method with those in the literature exhibits its higher effectiveness in the true decomposition of signals with different natures. It is also shown that using the proposed method for signal decomposition is able to correctly classify the healthy and defective states of the gearbox system alongside the principal component analysis method and support vector machine classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴实迎梅发布了新的文献求助30
刚刚
不吃香菜发布了新的文献求助10
刚刚
刚刚
惊火完成签到,获得积分10
1秒前
1秒前
狂野的山雁完成签到,获得积分10
1秒前
优雅山柏发布了新的文献求助10
1秒前
2秒前
2秒前
李健的粉丝团团长应助tim采纳,获得10
2秒前
2秒前
木南发布了新的文献求助10
2秒前
青塘龙仔发布了新的文献求助10
2秒前
猇会不会完成签到,获得积分20
2秒前
林安笙完成签到,获得积分10
2秒前
SciGPT应助杆杆采纳,获得10
3秒前
浮游应助wsh071117采纳,获得10
3秒前
慕青应助dxm采纳,获得10
3秒前
自觉画板发布了新的文献求助10
3秒前
4秒前
汉堡包应助HM采纳,获得10
4秒前
5秒前
李健的小迷弟应助小畅采纳,获得10
5秒前
5秒前
香蕉觅云应助zyd采纳,获得10
5秒前
CodeCraft应助瑶瑶采纳,获得10
5秒前
肥猫发布了新的文献求助10
6秒前
球球发布了新的文献求助10
7秒前
水水水完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
森陌夏栀发布了新的文献求助10
7秒前
123应助雷涵晶采纳,获得10
8秒前
8秒前
Bai_shao完成签到,获得积分10
8秒前
9秒前
Daily发布了新的文献求助10
9秒前
阳佟水蓉完成签到,获得积分10
9秒前
9秒前
英姑应助鲜艳的手链采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454