Fine-tuned variational mode decomposition for fault diagnosis of rotary machinery

峰度 带宽(计算) 信号(编程语言) 分解 分解法(排队论) 控制理论(社会学) 算法 信号处理 数学 断层(地质) 能量(信号处理) 模式(计算机接口) 计算机科学 统计 人工智能 地震学 地质学 操作系统 生物 程序设计语言 雷达 控制(管理) 计算机网络 电信 生态学
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:19 (5): 1453-1470 被引量:39
标识
DOI:10.1177/1475921719887496
摘要

Variational mode decomposition is a powerful signal processing technique that can adaptively decompose a multi-component signal into a number of modes, via solving an optimization problem. The optimal performance of this method in signal decomposition and avoiding of the mode mixing problem strictly relies on the true selection of decomposition parameters, that is, the number of extracted modes ( K) and the mode frequency bandwidth control parameter ( α). In the literature, the optimal values of these parameters are achieved by evaluating fault-related indices like kurtosis, but such an index is inefficient in judging the decomposition of healthy (without fault-related components), low-defective, and high-noise signals. In this research, a novel method called fine-tuned variational mode decomposition is proposed to determine the optimal values of decomposition parameters K and α, by judging the adaptive indices. In this proposed method, the optimal values of these parameters are obtained by minimizing the mean bandwidth of the extracted modes. In order to achieve these optimal values, the mean correlation coefficients between the adjacent modes and the energy loss coefficient between the original signal and the reconstructed signal, should not exceed of defined thresholds for optimal values. The proposed method is applied to the simulation signal and experimental ones collected from the automobile gearbox system. Comparing this method with those in the literature exhibits its higher effectiveness in the true decomposition of signals with different natures. It is also shown that using the proposed method for signal decomposition is able to correctly classify the healthy and defective states of the gearbox system alongside the principal component analysis method and support vector machine classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是站长才怪应助Khr1stINK采纳,获得10
刚刚
1秒前
xh完成签到,获得积分10
2秒前
para_团结完成签到,获得积分10
3秒前
怡然剑成发布了新的文献求助10
3秒前
4秒前
4秒前
ipeakkka发布了新的文献求助10
4秒前
George完成签到,获得积分10
6秒前
WDK完成签到,获得积分10
6秒前
情怀应助敏感的芷采纳,获得10
6秒前
Orange应助方勇飞采纳,获得10
7秒前
FashionBoy应助烂漫驳采纳,获得10
7秒前
8秒前
9秒前
大鱼完成签到,获得积分10
9秒前
9秒前
lu完成签到,获得积分10
10秒前
Murphy完成签到 ,获得积分10
10秒前
斯文败类应助大方嵩采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得30
11秒前
hh应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得20
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
sutharsons应助科研通管家采纳,获得200
12秒前
orixero应助科研通管家采纳,获得10
12秒前
许多知识发布了新的文献求助10
13秒前
FashionBoy应助su采纳,获得10
13秒前
13秒前
运敬完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824