Fine-tuned variational mode decomposition for fault diagnosis of rotary machinery

峰度 带宽(计算) 信号(编程语言) 分解 分解法(排队论) 控制理论(社会学) 算法 信号处理 数学 断层(地质) 能量(信号处理) 模式(计算机接口) 计算机科学 统计 人工智能 计算机网络 生态学 雷达 电信 控制(管理) 地震学 生物 程序设计语言 地质学 操作系统
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:19 (5): 1453-1470 被引量:39
标识
DOI:10.1177/1475921719887496
摘要

Variational mode decomposition is a powerful signal processing technique that can adaptively decompose a multi-component signal into a number of modes, via solving an optimization problem. The optimal performance of this method in signal decomposition and avoiding of the mode mixing problem strictly relies on the true selection of decomposition parameters, that is, the number of extracted modes ( K) and the mode frequency bandwidth control parameter ( α). In the literature, the optimal values of these parameters are achieved by evaluating fault-related indices like kurtosis, but such an index is inefficient in judging the decomposition of healthy (without fault-related components), low-defective, and high-noise signals. In this research, a novel method called fine-tuned variational mode decomposition is proposed to determine the optimal values of decomposition parameters K and α, by judging the adaptive indices. In this proposed method, the optimal values of these parameters are obtained by minimizing the mean bandwidth of the extracted modes. In order to achieve these optimal values, the mean correlation coefficients between the adjacent modes and the energy loss coefficient between the original signal and the reconstructed signal, should not exceed of defined thresholds for optimal values. The proposed method is applied to the simulation signal and experimental ones collected from the automobile gearbox system. Comparing this method with those in the literature exhibits its higher effectiveness in the true decomposition of signals with different natures. It is also shown that using the proposed method for signal decomposition is able to correctly classify the healthy and defective states of the gearbox system alongside the principal component analysis method and support vector machine classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
slp123456完成签到,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
起名完成签到,获得积分10
1秒前
鱼鱼应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
Ava应助gyj1采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
不想搞事应助科研通管家采纳,获得10
1秒前
鱼鱼应助科研通管家采纳,获得10
1秒前
一一完成签到,获得积分10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
鱼鱼应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
SYLH应助勤劳紫青采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
ding应助卫川影采纳,获得10
2秒前
柏林寒冬应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
36456657应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
htx完成签到,获得积分10
4秒前
在水一方应助冷酷莫茗采纳,获得10
4秒前
CAOHOU应助研友_85YNe8采纳,获得10
4秒前
秋天发布了新的文献求助10
4秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023306
求助须知:如何正确求助?哪些是违规求助? 3563350
关于积分的说明 11342113
捐赠科研通 3294890
什么是DOI,文献DOI怎么找? 1814795
邀请新用户注册赠送积分活动 889504
科研通“疑难数据库(出版商)”最低求助积分说明 812964