Fine-tuned variational mode decomposition for fault diagnosis of rotary machinery

峰度 带宽(计算) 信号(编程语言) 分解 分解法(排队论) 控制理论(社会学) 算法 信号处理 数学 断层(地质) 能量(信号处理) 模式(计算机接口) 计算机科学 统计 人工智能 地震学 地质学 操作系统 生物 程序设计语言 雷达 控制(管理) 计算机网络 电信 生态学
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:19 (5): 1453-1470 被引量:39
标识
DOI:10.1177/1475921719887496
摘要

Variational mode decomposition is a powerful signal processing technique that can adaptively decompose a multi-component signal into a number of modes, via solving an optimization problem. The optimal performance of this method in signal decomposition and avoiding of the mode mixing problem strictly relies on the true selection of decomposition parameters, that is, the number of extracted modes ( K) and the mode frequency bandwidth control parameter ( α). In the literature, the optimal values of these parameters are achieved by evaluating fault-related indices like kurtosis, but such an index is inefficient in judging the decomposition of healthy (without fault-related components), low-defective, and high-noise signals. In this research, a novel method called fine-tuned variational mode decomposition is proposed to determine the optimal values of decomposition parameters K and α, by judging the adaptive indices. In this proposed method, the optimal values of these parameters are obtained by minimizing the mean bandwidth of the extracted modes. In order to achieve these optimal values, the mean correlation coefficients between the adjacent modes and the energy loss coefficient between the original signal and the reconstructed signal, should not exceed of defined thresholds for optimal values. The proposed method is applied to the simulation signal and experimental ones collected from the automobile gearbox system. Comparing this method with those in the literature exhibits its higher effectiveness in the true decomposition of signals with different natures. It is also shown that using the proposed method for signal decomposition is able to correctly classify the healthy and defective states of the gearbox system alongside the principal component analysis method and support vector machine classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳远发布了新的文献求助10
1秒前
1秒前
墨海关注了科研通微信公众号
3秒前
hwezhu发布了新的文献求助10
4秒前
4秒前
JZa完成签到,获得积分10
8秒前
诸葛书虫发布了新的文献求助10
10秒前
公园人完成签到,获得积分20
14秒前
上官若男应助1122采纳,获得10
17秒前
17秒前
yt完成签到,获得积分10
19秒前
墨海发布了新的文献求助10
22秒前
莎头完成签到,获得积分10
23秒前
森气发布了新的文献求助10
23秒前
务实的若剑关注了科研通微信公众号
25秒前
xtlx完成签到,获得积分10
25秒前
森气完成签到,获得积分10
29秒前
YQ关注了科研通微信公众号
33秒前
GU完成签到,获得积分10
34秒前
35秒前
36秒前
38秒前
星辰大海应助upupup采纳,获得10
38秒前
39秒前
上进完成签到 ,获得积分10
41秒前
43秒前
所所应助hwezhu采纳,获得10
43秒前
不配.应助Fubin采纳,获得10
45秒前
49秒前
49秒前
科研通AI2S应助炒面采纳,获得10
49秒前
望南发布了新的文献求助10
54秒前
hwezhu发布了新的文献求助10
54秒前
13完成签到 ,获得积分10
55秒前
周shang发布了新的文献求助10
55秒前
upupup发布了新的文献求助10
55秒前
小马甲应助公园人采纳,获得50
1分钟前
1分钟前
望南完成签到,获得积分10
1分钟前
winwin完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079