Fine-tuned variational mode decomposition for fault diagnosis of rotary machinery

峰度 带宽(计算) 信号(编程语言) 分解 分解法(排队论) 控制理论(社会学) 算法 信号处理 数学 断层(地质) 能量(信号处理) 模式(计算机接口) 计算机科学 统计 人工智能 计算机网络 生态学 雷达 电信 控制(管理) 地震学 生物 程序设计语言 地质学 操作系统
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:19 (5): 1453-1470 被引量:39
标识
DOI:10.1177/1475921719887496
摘要

Variational mode decomposition is a powerful signal processing technique that can adaptively decompose a multi-component signal into a number of modes, via solving an optimization problem. The optimal performance of this method in signal decomposition and avoiding of the mode mixing problem strictly relies on the true selection of decomposition parameters, that is, the number of extracted modes ( K) and the mode frequency bandwidth control parameter ( α). In the literature, the optimal values of these parameters are achieved by evaluating fault-related indices like kurtosis, but such an index is inefficient in judging the decomposition of healthy (without fault-related components), low-defective, and high-noise signals. In this research, a novel method called fine-tuned variational mode decomposition is proposed to determine the optimal values of decomposition parameters K and α, by judging the adaptive indices. In this proposed method, the optimal values of these parameters are obtained by minimizing the mean bandwidth of the extracted modes. In order to achieve these optimal values, the mean correlation coefficients between the adjacent modes and the energy loss coefficient between the original signal and the reconstructed signal, should not exceed of defined thresholds for optimal values. The proposed method is applied to the simulation signal and experimental ones collected from the automobile gearbox system. Comparing this method with those in the literature exhibits its higher effectiveness in the true decomposition of signals with different natures. It is also shown that using the proposed method for signal decomposition is able to correctly classify the healthy and defective states of the gearbox system alongside the principal component analysis method and support vector machine classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟德尔吃豌豆完成签到,获得积分10
刚刚
hu驳回了ZGZ123应助
刚刚
1秒前
yang发布了新的文献求助10
1秒前
星辰大海应助杨惠子采纳,获得10
1秒前
1秒前
糊涂的含卉完成签到,获得积分10
2秒前
烟花应助bcliu9920采纳,获得10
2秒前
赘婿应助彳亍1117采纳,获得100
2秒前
呃呃完成签到,获得积分10
2秒前
诸天蓉完成签到,获得积分10
2秒前
陶醉世德完成签到,获得积分10
2秒前
2秒前
young应助机灵水卉采纳,获得10
3秒前
冷静的小虾米完成签到 ,获得积分10
3秒前
李健的小迷弟应助sandman采纳,获得30
3秒前
所所应助Ywq125采纳,获得10
3秒前
3秒前
3秒前
123123完成签到,获得积分10
4秒前
JUN完成签到,获得积分10
4秒前
田様应助fighting采纳,获得10
4秒前
123完成签到,获得积分20
4秒前
5秒前
酒玖柒完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
桃子发布了新的文献求助10
6秒前
MM完成签到,获得积分10
6秒前
月亮完成签到,获得积分10
6秒前
6秒前
magic完成签到,获得积分10
6秒前
奔波儿灞发布了新的文献求助10
6秒前
ze完成签到,获得积分10
6秒前
QiranSheng发布了新的文献求助10
6秒前
dj完成签到 ,获得积分10
7秒前
7秒前
dfig发布了新的文献求助10
7秒前
头盔小猪完成签到,获得积分10
8秒前
syw完成签到,获得积分10
8秒前
葡萄成熟完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301