Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment

免疫学 肿瘤微环境 免疫系统 肿瘤免疫学 生物 医学 免疫疗法
作者
Stephanie van de Wall,Kim Santegoets,Eline J.H. van Houtum,Christian Büll,Gosse J. Adema
出处
期刊:Trends in Immunology [Elsevier]
卷期号:41 (4): 274-285 被引量:157
标识
DOI:10.1016/j.it.2020.02.001
摘要

Aberrant sialic acid sugar expression is commonly found in different cancer types and immune cells express immunomodulatory Siglec receptors that can recognize these sialic acids in humans and mice. Recently, high expression of Siglecs was found on several immune cells within the tumor microenvironment (TME). Recent studies, using human samples and mouse models, indicate that sialoglycan–Siglec interactions in the TME can suppress effector immune cell activity and modulate myeloid cell functions, thus contributing to tumor immune evasion and sustained tumor growth. The individual contribution of the 14 Siglec family members to immune evasion and their precise sialoglycan ligands in the TME remain to be elucidated. Sialoglycans and Siglecs might represent immune ‘checkpoints’ that should be further explored as potential targets for cancer immunotherapy. Sialic acid sugar-carrying glycans, sialoglycans, are aberrantly expressed on many tumor cells and have emerged as potent regulatory molecules involved in creating a tumor-supportive microenvironment. Sialoglycans can be recognized by sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immunomodulatory receptors. Most mammalian Siglecs transmit inhibitory signals comparable with the immune checkpoint inhibitor programmed death protein 1 (PD-1), but some are activating. Recent studies have shown that tumor cells can exploit sialoglycan–Siglec interactions to modulate immune cell function, contributing to an immunosuppressive tumor microenvironment (TME). Interference with sialoglycan synthesis or sialoglycan–Siglec interactions might improve antitumor immunity. Many questions regarding specificity, signaling, and regulatory function of sialoglycan–Siglec interactions remain. We posit that sialoglycans and Siglecs present as potential glyco-immune ‘checkpoints’ for cancer immunotherapy. Sialic acid sugar-carrying glycans, sialoglycans, are aberrantly expressed on many tumor cells and have emerged as potent regulatory molecules involved in creating a tumor-supportive microenvironment. Sialoglycans can be recognized by sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immunomodulatory receptors. Most mammalian Siglecs transmit inhibitory signals comparable with the immune checkpoint inhibitor programmed death protein 1 (PD-1), but some are activating. Recent studies have shown that tumor cells can exploit sialoglycan–Siglec interactions to modulate immune cell function, contributing to an immunosuppressive tumor microenvironment (TME). Interference with sialoglycan synthesis or sialoglycan–Siglec interactions might improve antitumor immunity. Many questions regarding specificity, signaling, and regulatory function of sialoglycan–Siglec interactions remain. We posit that sialoglycans and Siglecs present as potential glyco-immune ‘checkpoints’ for cancer immunotherapy. synthetic fluorinated sialic acid mimetic that blocks sialic acid expression by inhibiting sialyltransferase activity. destruction of antibody-coated target cells by effector immune cells. immune cells capable of processing and presenting antigens to lymphocytes. engineered antibodies with two distinct binding sites. enzyme that activates sialic acids for incorporation into sialoglycans. the sequence of uptake, processing, and presentation of extracellular antigens on MHC I by DCs to activate CD8+ T cells. complement inhibiting protein that recognizes sialoglycans. highly diverse structures composed of different sugar molecules attached to glycoproteins and glycolipids. glycan analogs mimicking the structure of a glycan but with different biological effects. uridine diphosphate (UDP)-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, a bifunctional enzyme involved in sialic acid biosynthesis. the dynamic process of the host immune system that prevents development of primary tumors and/or favors tumor immune evasion by shaping tumor immunogenicity or attenuation of antitumor immunity, respectively. conserved amino acid sequence in the cytoplasmic part of activating immune receptors, such as CD3. conserved amino acid sequence in the cytoplasmic part of immune inhibitory receptors, such as PD-1. lipid bilayer particles suitable, for example, for in vivo targeting and drug administration. glycoprotein with heavy O-glycosylation, overexpressed in many epithelial cancers. heterogeneous population of myeloid cells, associated with poor prognosis in cancer patients, that suppress effector immune cells. immunodeficient strain, lacking T cells, B cells, and NK cells. mouse CD8+ T cells expressing a transgenic TCR recognizing chicken ovalbumin (OVA 257–264) presented on MHC I. mouse CD4+ T cells expressing a transgenic TCR recognizing chicken ovalbumin (OVA 323–339) presented on MHC II. glycan-binding adhesion receptors [endothelial (E)-, leukocyte (L)-, platelet (P)-selectin] involved in lymphocyte homing. family of negatively charged sugars that cap glycans. family of immunomodulatory receptors, expressed in the immune system as well as in other tissues, that specifically bind to sialic acids. enzymes that cleave sialic acids off sialoglycans. glycans containing sialic acids. tumor-associated glycan containing sialic acid. gene encoding the Golgi-membrane transporter that transports cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-sialic acid) into the Golgi. family of pattern-recognition receptors of the innate immune system recognizing pathogens. prominent in the TME; they generally promote tumor growth. tumor surrounding containing various cell types (tumor cells, endothelial cells, immune cells, fibroblasts etc.), extracellular matrix components, and soluble factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解语花发布了新的文献求助30
刚刚
刚刚
甜蜜的马里奥完成签到,获得积分10
刚刚
2秒前
熬夜朱古力完成签到,获得积分20
2秒前
赵小胖完成签到,获得积分10
2秒前
opus17完成签到,获得积分10
2秒前
xywang发布了新的文献求助10
2秒前
超然度陈完成签到,获得积分10
2秒前
七七发布了新的文献求助10
2秒前
天马行空完成签到,获得积分10
3秒前
123完成签到 ,获得积分10
3秒前
坦率尔琴完成签到,获得积分10
5秒前
钱学森完成签到,获得积分10
5秒前
刘泽民完成签到,获得积分10
5秒前
王文静完成签到 ,获得积分10
5秒前
烟花应助yuki采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
6秒前
微笑芒果完成签到 ,获得积分0
6秒前
情怀应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
优雅的砖头完成签到,获得积分10
6秒前
天马行空完成签到,获得积分10
7秒前
7秒前
61完成签到 ,获得积分10
7秒前
落寞的路灯完成签到,获得积分10
7秒前
Yang完成签到,获得积分10
8秒前
春夏秋冬完成签到,获得积分10
8秒前
lingVing瑜完成签到 ,获得积分10
9秒前
zhouyan完成签到,获得积分10
9秒前
满意大门完成签到,获得积分10
10秒前
FashionBoy应助trial采纳,获得10
11秒前
hiswen完成签到,获得积分10
11秒前
laohu发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
毛妹完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349