Operating Room Staffing and Scheduling

人员配备 计算机科学 调度(生产过程) 加班费 杠杆(统计) 运筹学 地铁列车时刻表 数学优化 收入 运营管理 数学 业务 经济 人工智能 管理 会计 劳动经济学 操作系统
作者
Chaithanya Bandi,Diwakar Gupta
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:22 (5): 958-974 被引量:37
标识
DOI:10.1287/msom.2019.0781
摘要

Problem definition: We consider two problems faced by an operating room (OR) manager: (1) how many baseline (core) staff to hire for OR suites, and (2) how to schedule surgery requests that arrive one by one. The OR manager has access to historical case count and case length data, and needs to balance the fixed cost of baseline staff and variable cost of overtime, while satisfying surgeons’ preferences. Academic/practical relevance: ORs are costly to operate and generate about 70% of hospitals’ revenues from surgical operations and subsequent hospitalizations. Because hospitals are increasingly under pressure to reduce costs, it is important to make staffing and scheduling decisions in an optimal manner. Also, hospitals need to leverage data when developing algorithmic solutions, and model tradeoffs between staffing costs and surgeons’ preferences. We present a methodology for doing so, and test it on real data from a hospital. Methodology: We propose a new criterion called the robust competitive ratio for designing online algorithms. Using this criterion and a robust optimization approach to model the uncertainty in case mix and case lengths, we develop tractable optimization formulations to solve the staffing and scheduling problems. Results: For the staffing problem, we show that algorithms belonging to the class of interval classification algorithms achieve the best robust competitive ratio, and develop a tractable approach for calculating the optimal parameters of our proposed algorithm. For the scheduling phase, which occurs one or two days before each surgery day, we demonstrate how a robust optimization framework may be used to find implementable schedules while taking into account surgeons’ preferences such as back-to-back and same-OR scheduling of cases. We also perform numerical experiments with real and synthetic data, which show that our approach can significantly reduce total staffing cost. Managerial implications: We present algorithms that are easy to implement and tractable. These algorithms also allow the OR manager to specify the size of the uncertainty set and to control overtime costs while meeting surgeons’ preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
More完成签到 ,获得积分10
1秒前
庸尘完成签到,获得积分10
2秒前
2秒前
今后应助bruce233采纳,获得10
4秒前
CodeCraft应助朴实的小白菜采纳,获得10
4秒前
小点点发布了新的文献求助10
6秒前
思源应助dd采纳,获得10
6秒前
科研通AI2S应助万仁杰采纳,获得10
7秒前
横空完成签到,获得积分10
8秒前
9秒前
9秒前
xuzj完成签到 ,获得积分10
10秒前
11秒前
12秒前
星辰大海应助芒果杀手采纳,获得10
13秒前
含蓄初之完成签到,获得积分10
13秒前
单纯灭龙发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
远山发布了新的文献求助20
17秒前
乐天完成签到,获得积分10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
shinysparrow应助科研通管家采纳,获得50
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
18秒前
dd发布了新的文献求助10
20秒前
青青儿发布了新的文献求助10
20秒前
单纯灭龙完成签到,获得积分10
23秒前
雪123发布了新的文献求助10
25秒前
26秒前
26秒前
WATeam完成签到,获得积分10
26秒前
陆碌路完成签到 ,获得积分10
28秒前
ho完成签到,获得积分10
28秒前
斯文败类应助能干豆芽采纳,获得10
28秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170213
求助须知:如何正确求助?哪些是违规求助? 2821426
关于积分的说明 7934126
捐赠科研通 2481670
什么是DOI,文献DOI怎么找? 1322010
科研通“疑难数据库(出版商)”最低求助积分说明 633451
版权声明 602595