Multimodal Deep Learning and Visible-Light and Hyperspectral Imaging for Fruit Maturity Estimation

高光谱成像 卷积神经网络 RGB颜色模型 深度学习 人工智能 计算机科学 成熟度(心理) 串联(数学) 模式识别(心理学) 机器学习 计算机视觉 数学 心理学 发展心理学 组合数学
作者
Cinmayii A. Garillos-Manliguez,John Y. Chiang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (4): 1288-1288 被引量:40
标识
DOI:10.3390/s21041288
摘要

Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe, but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-destructive and multimodal classification using deep convolutional neural networks that estimate fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured with RGB images, while spectral signatures that provide high sensitivity and high correlation with the internal properties of fruits can be extracted from hyperspectral images with wavelength range in between 400 nm and 900 nm—factors that must be considered when building a model. This study further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet, and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with powerful deep convolutional neural network models can classify fruit maturity even at refined levels of six stages. This indicates that multimodal deep learning architectures and multimodal imaging have great potential for real-time in-field fruit maturity estimation that can help estimate optimal harvest time and other in-field industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助xiaoxiao采纳,获得10
1秒前
米糊发布了新的文献求助10
1秒前
和谐的阁发布了新的文献求助10
1秒前
kingjames完成签到,获得积分10
2秒前
熠熠生辉发布了新的文献求助10
4秒前
嗯额完成签到,获得积分10
4秒前
4秒前
wpz完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
7秒前
萄哥布鸽发布了新的文献求助10
9秒前
NexusExplorer应助zhao采纳,获得10
9秒前
李保龙完成签到 ,获得积分10
10秒前
tt发布了新的文献求助10
11秒前
future发布了新的文献求助10
11秒前
Toby发布了新的文献求助10
12秒前
子卿发布了新的文献求助10
12秒前
ZYX完成签到,获得积分10
12秒前
111发布了新的文献求助10
12秒前
ding应助熠熠生辉采纳,获得10
13秒前
13秒前
怡然的怀莲完成签到 ,获得积分20
14秒前
鸣笛应助和谐的阁采纳,获得70
14秒前
小马甲应助隐形的念芹采纳,获得10
15秒前
15秒前
17秒前
善学以致用应助努力采纳,获得10
18秒前
情怀应助111采纳,获得10
18秒前
NexusExplorer应助大力的迎松采纳,获得10
18秒前
瓜瓜完成签到,获得积分10
18秒前
yuchen发布了新的文献求助10
19秒前
传奇3应助tt采纳,获得10
20秒前
华仔应助欧气青年采纳,获得10
21秒前
22秒前
22秒前
英俊的铭应助萄哥布鸽采纳,获得10
22秒前
斯文败类应助freyr采纳,获得10
23秒前
汤泽琪发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993793
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265507
捐赠科研通 3274273
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712