Multimodal Deep Learning and Visible-Light and Hyperspectral Imaging for Fruit Maturity Estimation

高光谱成像 卷积神经网络 RGB颜色模型 深度学习 人工智能 计算机科学 成熟度(心理) 串联(数学) 模式识别(心理学) 机器学习 计算机视觉 数学 心理学 组合数学 发展心理学
作者
Cinmayii A. Garillos-Manliguez,John Y. Chiang
出处
期刊:Sensors [MDPI AG]
卷期号:21 (4): 1288-1288 被引量:40
标识
DOI:10.3390/s21041288
摘要

Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe, but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-destructive and multimodal classification using deep convolutional neural networks that estimate fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured with RGB images, while spectral signatures that provide high sensitivity and high correlation with the internal properties of fruits can be extracted from hyperspectral images with wavelength range in between 400 nm and 900 nm—factors that must be considered when building a model. This study further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet, and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with powerful deep convolutional neural network models can classify fruit maturity even at refined levels of six stages. This indicates that multimodal deep learning architectures and multimodal imaging have great potential for real-time in-field fruit maturity estimation that can help estimate optimal harvest time and other in-field industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
范海辛完成签到,获得积分10
1秒前
Hello应助个性的凌柏采纳,获得30
2秒前
cocolu应助无限的FF采纳,获得10
2秒前
Lily完成签到,获得积分20
3秒前
Drzhang完成签到 ,获得积分10
4秒前
xiaowu完成签到,获得积分10
4秒前
研友_1066发布了新的文献求助10
6秒前
6秒前
于清绝完成签到 ,获得积分10
7秒前
7秒前
斯可发布了新的文献求助10
9秒前
萧水白应助拾野之苹采纳,获得10
10秒前
沈海完成签到,获得积分10
11秒前
13秒前
动听怜寒关注了科研通微信公众号
13秒前
biubiuxue完成签到,获得积分10
13秒前
彩色的芝麻完成签到 ,获得积分10
14秒前
yohu应助还在吗采纳,获得10
16秒前
研友_1066完成签到,获得积分10
16秒前
zhao完成签到 ,获得积分10
16秒前
19秒前
CodeCraft应助wudi19887采纳,获得10
19秒前
20秒前
20秒前
拾野之苹完成签到,获得积分10
21秒前
23秒前
pcx完成签到,获得积分10
23秒前
r41r32完成签到 ,获得积分10
23秒前
77发布了新的文献求助10
23秒前
24秒前
wy.he应助Rain采纳,获得10
24秒前
oookkay发布了新的文献求助10
26秒前
动听怜寒发布了新的文献求助10
28秒前
斯文败类应助cyy采纳,获得10
28秒前
赘婿应助离魂采纳,获得10
29秒前
31秒前
SYT完成签到,获得积分10
34秒前
34秒前
ZL发布了新的文献求助10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304342
求助须知:如何正确求助?哪些是违规求助? 2938315
关于积分的说明 8488166
捐赠科研通 2612797
什么是DOI,文献DOI怎么找? 1426863
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374