隐形眼镜
纳米复合材料
材料科学
失明
胶体金
镜头(地质)
可穿戴计算机
纳米技术
验光服务
纳米颗粒
眼科
光学
医学
计算机科学
物理
嵌入式系统
作者
Ahmed E. Salih,Mohamed Elsherif,Fahad Alam,Ali K. Yetisen,Haider Butt
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-02-11
卷期号:15 (3): 4870-4880
被引量:58
标识
DOI:10.1021/acsnano.0c09657
摘要
Color vision deficiency (CVD) is an ocular congenital disorder that affects 8% of males and 0.5% of females. The most prevalent form of color vision deficiency (color blindness) affects protans and deutans and is more commonly known as "red–green color blindness". Since there is no cure for this disorder, CVD patients opt for wearables that aid in enhancing their color perception. The most common wearable used by CVD patients is a form of tinted glass/lens. Those glasses filter out the problematic wavelengths (540–580 nm) for the red–green CVD patients using organic dyes. However, few studies have addressed the fabrication of contact lenses for color vision deficiency, and several problems related to their effectiveness and toxicity were reported. In this study, gold nanoparticles are integrated into contact lens material, thus forming nanocomposite contact lenses targeted for red–green CVD application. Three distinct sets of nanoparticles were characterized and incorporated with the hydrogel material of the lenses (pHEMA), and their resulting optical and material properties were assessed. The transmission spectra of the developed nanocomposite lenses were analogous to those of the commercial CVD wearables, and their water retention and wettability capabilities were superior to those in some of the commercially available contact lenses used for cosmetic/vision correction purposes. Hence, this work demonstrates the potential of gold nanocomposite lenses in CVD management and, more generally, color filtering applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI