亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Consensus convergence in large-group social network environment: Coordination between trust relationship and opinion similarity

计算机科学 群体决策 过程(计算) 聚类分析 相似性(几何) 感知 意见领导 情感(语言学) 社交网络(社会语言学) 数据挖掘 趋同(经济学) 人工智能 社会化媒体 机器学习 社会心理学 心理学 政治学 经济增长 操作系统 图像(数学) 沟通 万维网 公共关系 经济 神经科学
作者
Zhijiao Du,Sumin Yu,Hanyang Luo,Xudong Lin
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:217: 106828-106828 被引量:112
标识
DOI:10.1016/j.knosys.2021.106828
摘要

Group decision-making (GDM) in large-group social network environment (LGSNE) has attracted considerable attention in the field of decision science. Social relationships exist among decision-makers, and individual decisions are often influenced by others they are connected with. Opinions among large-scale decision-makers can easily be controversial and conflicting. Reaching consensus is necessary, but it requires the adjustment of some individual opinions. Due to differences in self-interest and perception, some decision-makers are noncooperative with regard to adjusting their opinions to promote consensus. This may delay consensus convergence and ultimately affect decision quality. This study proposes a two-dimensional consensus convergence model considering noncooperative behaviors. We first describe the characteristics of GDM problems in LGSNE. Two measurement attributes – trust relationship and opinion similarity – are identified as important factors throughout the decision-making process. Then, we propose a hierarchical clustering method based on the trust–similarity measure. A weight-determining method for clusters is presented that considers the internal and external features of a cluster. Based on these, a two-dimensional consensus convergence process is designed to reduce opinion differences and manage noncooperative behaviors. Finally, a numerical experiment is used to illustrate the feasibility and efficacy of the proposed model, and comparative analysis reveals its features and advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
东溟渔夫发布了新的文献求助10
11秒前
牛牛月饼完成签到,获得积分10
18秒前
Akim应助东溟渔夫采纳,获得10
18秒前
BBQ关闭了BBQ文献求助
19秒前
20秒前
1分钟前
v哈哈发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Ming发布了新的文献求助10
1分钟前
SciGPT应助Ming采纳,获得10
1分钟前
瘦瘦的师发布了新的文献求助10
2分钟前
大模型应助zhengzhster采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
自律发布了新的文献求助10
2分钟前
自律完成签到,获得积分10
2分钟前
BBQ发布了新的文献求助10
3分钟前
Ezekiel给Ezekiel的求助进行了留言
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BBQ完成签到,获得积分10
3分钟前
lim完成签到,获得积分10
3分钟前
3分钟前
zhengzhster发布了新的文献求助10
4分钟前
小邓完成签到,获得积分10
4分钟前
可乐发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小于完成签到,获得积分10
4分钟前
4分钟前
Ezekiel发布了新的文献求助10
4分钟前
上官枫完成签到 ,获得积分10
5分钟前
5分钟前
Ming发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
Ming完成签到,获得积分10
5分钟前
merrylake完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
vivishe发布了新的文献求助10
5分钟前
vivishe完成签到,获得积分10
5分钟前
George发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433