Optimizing Task Assignment for Reliable Blockchain-Empowered Federated Edge Learning

计算机科学 GSM演进的增强数据速率 声誉 任务(项目管理) 边缘设备 边缘计算 单点故障 可靠性(半导体) 匹配(统计) 计算机安全 机器学习 分布式计算 人工智能 工程类 操作系统 系统工程 功率(物理) 物理 社会学 数学 统计 云计算 量子力学 社会科学
作者
Jiawen Kang,Zehui Xiong,Xuandi Li,Yang Zhang,Dusit Niyato,Cyril Leung,Chunyan Miao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (2): 1910-1923 被引量:67
标识
DOI:10.1109/tvt.2021.3055767
摘要

A rapid-growing machine learning technique called federated edge learning has emerged to allow a massive number of edge devices (e.g. smart phones) to collaboratively train globally shared models without revealing their private raw data. This technique not only ensures good machine learning performance but also maintains data privacy of the edge devices. However, the federated edge learning still faces the following critical challenges: (i) difficulty in avoiding unreliable edge devices acting as workers for federated edge learning, and (ii) lack of efficient learning task assignment schemes among task publishers and workers. To tackle these challenges, reputation is utilized as a metric to evaluate the trustworthiness and reliability of the edge devices. A many-to-one matching model is proposed to address the task assignment problem between task publishers and reliable workers with high reputation. For stimulating reliable edge devices to join model training and enable secure reputation management, blockchain is employed to store the training records and manage reputation data in a decentralized and secure manner without the risk of a single point of failure. Numerical results show that the proposed schemes can achieve significant performance improvement in terms of reliability of federated edge learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过的小甜瓜完成签到,获得积分10
刚刚
PANYS完成签到,获得积分20
刚刚
王晓雪发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
Hello应助赤侯采纳,获得10
2秒前
3秒前
傻瓜的帮凶完成签到,获得积分20
3秒前
3秒前
albertxin完成签到,获得积分10
5秒前
5秒前
勇往直前发布了新的文献求助10
5秒前
maox1aoxin应助Zhuzhu采纳,获得200
5秒前
毛123完成签到,获得积分10
6秒前
FrancisFang完成签到,获得积分10
6秒前
悦宝123456发布了新的文献求助10
7秒前
albertxin发布了新的文献求助10
8秒前
9秒前
senmo发布了新的文献求助10
9秒前
kyt发布了新的文献求助10
9秒前
9秒前
1234567完成签到,获得积分10
9秒前
11秒前
12秒前
善学以致用应助小谢同学采纳,获得10
13秒前
sunny发布了新的文献求助10
14秒前
领导范儿应助冷酷的雅寒采纳,获得10
14秒前
Flynn发布了新的文献求助30
15秒前
充电宝应助DOG采纳,获得10
15秒前
小二郎应助赵振辉采纳,获得10
16秒前
Hello应助称心靖雁采纳,获得10
16秒前
Lucas应助jiujiuhuang采纳,获得10
18秒前
宝海青发布了新的文献求助30
18秒前
无辜丹秋发布了新的文献求助10
19秒前
所所应助猫小乐C采纳,获得10
19秒前
平常的芝麻完成签到,获得积分10
20秒前
22秒前
kiwi发布了新的文献求助10
23秒前
Sandrine应助傻瓜的帮凶采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580