Optimizing Task Assignment for Reliable Blockchain-Empowered Federated Edge Learning

计算机科学 GSM演进的增强数据速率 声誉 任务(项目管理) 边缘设备 边缘计算 单点故障 可靠性(半导体) 匹配(统计) 计算机安全 机器学习 分布式计算 人工智能 工程类 操作系统 系统工程 功率(物理) 物理 社会学 数学 统计 云计算 量子力学 社会科学
作者
Jiawen Kang,Zehui Xiong,Xuandi Li,Yang Zhang,Dusit Niyato,Cyril Leung,Chunyan Miao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (2): 1910-1923 被引量:67
标识
DOI:10.1109/tvt.2021.3055767
摘要

A rapid-growing machine learning technique called federated edge learning has emerged to allow a massive number of edge devices (e.g. smart phones) to collaboratively train globally shared models without revealing their private raw data. This technique not only ensures good machine learning performance but also maintains data privacy of the edge devices. However, the federated edge learning still faces the following critical challenges: (i) difficulty in avoiding unreliable edge devices acting as workers for federated edge learning, and (ii) lack of efficient learning task assignment schemes among task publishers and workers. To tackle these challenges, reputation is utilized as a metric to evaluate the trustworthiness and reliability of the edge devices. A many-to-one matching model is proposed to address the task assignment problem between task publishers and reliable workers with high reputation. For stimulating reliable edge devices to join model training and enable secure reputation management, blockchain is employed to store the training records and manage reputation data in a decentralized and secure manner without the risk of a single point of failure. Numerical results show that the proposed schemes can achieve significant performance improvement in terms of reliability of federated edge learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜同心完成签到,获得积分20
刚刚
柠檬没我萌完成签到 ,获得积分10
刚刚
刚刚
善学以致用应助乔垣结衣采纳,获得10
刚刚
刚刚
樊念烟发布了新的文献求助10
1秒前
1秒前
wanci应助tututu97采纳,获得10
1秒前
英姑应助贪玩元晴采纳,获得10
1秒前
1秒前
中国人发布了新的文献求助10
2秒前
2秒前
张昭蓉发布了新的文献求助10
2秒前
沐沐发布了新的文献求助10
3秒前
MicroCytoYL完成签到 ,获得积分10
3秒前
Henry发布了新的文献求助10
3秒前
laowang发布了新的文献求助10
3秒前
caizhonglun完成签到,获得积分10
4秒前
4秒前
可可完成签到,获得积分10
4秒前
WDF完成签到 ,获得积分10
4秒前
小小柴完成签到,获得积分10
5秒前
monair完成签到,获得积分10
5秒前
5秒前
Owen应助guguhuhu采纳,获得10
5秒前
5秒前
6秒前
6秒前
xsh发布了新的文献求助10
6秒前
彭于晏应助樊念烟采纳,获得10
6秒前
6秒前
7秒前
淋漓尽致发布了新的文献求助10
7秒前
动听服饰完成签到,获得积分10
7秒前
Tina完成签到,获得积分10
7秒前
happystar发布了新的文献求助10
7秒前
7秒前
中国人完成签到,获得积分10
8秒前
贪玩元晴完成签到,获得积分10
8秒前
仙人掌完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794