Optimizing Task Assignment for Reliable Blockchain-Empowered Federated Edge Learning

计算机科学 GSM演进的增强数据速率 声誉 任务(项目管理) 边缘设备 边缘计算 单点故障 可靠性(半导体) 匹配(统计) 计算机安全 机器学习 分布式计算 人工智能 工程类 操作系统 系统工程 功率(物理) 物理 社会学 数学 统计 云计算 量子力学 社会科学
作者
Jiawen Kang,Zehui Xiong,Xuandi Li,Yang Zhang,Dusit Niyato,Cyril Leung,Chunyan Miao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (2): 1910-1923 被引量:67
标识
DOI:10.1109/tvt.2021.3055767
摘要

A rapid-growing machine learning technique called federated edge learning has emerged to allow a massive number of edge devices (e.g. smart phones) to collaboratively train globally shared models without revealing their private raw data. This technique not only ensures good machine learning performance but also maintains data privacy of the edge devices. However, the federated edge learning still faces the following critical challenges: (i) difficulty in avoiding unreliable edge devices acting as workers for federated edge learning, and (ii) lack of efficient learning task assignment schemes among task publishers and workers. To tackle these challenges, reputation is utilized as a metric to evaluate the trustworthiness and reliability of the edge devices. A many-to-one matching model is proposed to address the task assignment problem between task publishers and reliable workers with high reputation. For stimulating reliable edge devices to join model training and enable secure reputation management, blockchain is employed to store the training records and manage reputation data in a decentralized and secure manner without the risk of a single point of failure. Numerical results show that the proposed schemes can achieve significant performance improvement in terms of reliability of federated edge learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lance先生完成签到,获得积分10
刚刚
1秒前
ChangSZ完成签到,获得积分10
1秒前
日月山河永在完成签到,获得积分10
1秒前
甜蜜英姑完成签到,获得积分10
2秒前
2秒前
怕黑向秋完成签到,获得积分10
2秒前
2秒前
852应助waq采纳,获得10
3秒前
海鸥海鸥完成签到,获得积分10
3秒前
3秒前
笑点低蜜蜂完成签到,获得积分10
3秒前
nana完成签到,获得积分10
3秒前
xiaoxiao完成签到,获得积分10
3秒前
顺心迎南发布了新的文献求助10
3秒前
4秒前
4秒前
xhy发布了新的文献求助10
4秒前
library2025完成签到,获得积分10
4秒前
FashionBoy应助宋十一采纳,获得10
4秒前
4秒前
有魅力哈密瓜完成签到,获得积分10
5秒前
gougoudy完成签到,获得积分20
5秒前
吃面包的熊猫完成签到,获得积分10
5秒前
孙一雯完成签到,获得积分10
7秒前
李健应助hhh采纳,获得10
7秒前
七七发布了新的文献求助20
7秒前
hu970发布了新的文献求助10
7秒前
牧海冬发布了新的文献求助10
7秒前
可颂发布了新的文献求助10
7秒前
情怀应助后知后觉采纳,获得10
7秒前
嗡嗡完成签到,获得积分10
7秒前
优雅的琳完成签到,获得积分20
7秒前
迷路安阳完成签到,获得积分10
7秒前
Anonymous完成签到,获得积分10
8秒前
8秒前
小蘑菇应助自然采纳,获得10
9秒前
伞兵龙完成签到,获得积分10
9秒前
9秒前
西安小小朱完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672