Modelling labour productivity using SVM and RF: a comparative study on classifiers performance

生产力 支持向量机 人工智能 机器学习 计算机科学 模式识别(心理学) 计量经济学 经济 经济增长
作者
Mohammed Hamza Momade,Shamsuddin Shahid,Mohd Rosli Hainin,Mohamed Salem Nashwan,Abdulhakim Tahir Umar
出处
期刊:The international journal of construction management [Taylor & Francis]
卷期号:22 (10): 1924-1934 被引量:43
标识
DOI:10.1080/15623599.2020.1744799
摘要

The purpose of this paper is to propose a data-driven approach for preparation of Construction Labour Productivity (CLP) models from influencing labour factors. Two state-of-art machine learning-based classifiers, Support Vector Machine (SVM) and Random Forest (RF) were used for modelling CLP. First, a preliminary review of previous literature was carried out to extract all CLP related factors. Subsequently, the list of CLP factors were ranked in terms of most influential in Malaysian Residential standpoint by experienced Project Managers through a pilot survey. The most influential factors identified were labour's lack of work experience, job category, education/training, nationality, skills, age and marital status. Data was collected based on these influencing factors from all construction workers in Malaysian Residential Projects. The data collected were used to develop CLP models using SVM and RF. The performance of the models was assessed using several statistical indices including Percentage of Correct (PC), Heidke Skill Score (HSS), the Probability of Detection (POD), the False Alarm Ratio (FAR) and the Peirce skill score (PSS). The SVM and RF simulated the CLP with high accuracy. The POD for both models was found above 90% in predicting different categories of productivity. The reliability plots showed a high efficiency of the models. The results indicate that the advanced machine learning methods can be used to achieve high accuracy in prediction of CLP. The present study can also be helpful for researchers and industry practitioners to understand how machine learning methods can be employed to learn more about productivity in construction and eventually improve the standards of construction labour productivity in Malaysia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炸鸡叔完成签到,获得积分10
1秒前
眼睛大的冰岚完成签到,获得积分10
2秒前
佟莫言发布了新的文献求助10
3秒前
完美世界应助peng采纳,获得10
3秒前
小晨完成签到 ,获得积分10
3秒前
舒心远侵发布了新的文献求助10
5秒前
冷静的胜完成签到,获得积分10
5秒前
林海雨完成签到,获得积分20
5秒前
5秒前
Howard发布了新的文献求助10
6秒前
6秒前
瓦尔迪完成签到,获得积分10
7秒前
8秒前
10秒前
和谐的数据线完成签到,获得积分10
10秒前
张冉冉应助炸鸡叔采纳,获得50
11秒前
water发布了新的文献求助10
12秒前
Hello应助yongzaizhuigan采纳,获得10
12秒前
13秒前
Hui发布了新的文献求助20
13秒前
Monet发布了新的文献求助10
13秒前
13秒前
14秒前
科研通AI5应助小小果采纳,获得30
14秒前
14秒前
科研通AI2S应助林海雨采纳,获得10
15秒前
丹青发布了新的文献求助10
18秒前
陈雷应助和谐的数据线采纳,获得20
20秒前
专注丸子发布了新的文献求助10
20秒前
少女徐必成完成签到 ,获得积分10
20秒前
科研副本发布了新的文献求助10
22秒前
realer完成签到,获得积分10
22秒前
Keyan完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
默默完成签到 ,获得积分10
24秒前
FashionBoy应助keyangouderic采纳,获得10
25秒前
25秒前
思源应助烂漫臻采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755011
求助须知:如何正确求助?哪些是违规求助? 3298314
关于积分的说明 10104397
捐赠科研通 3012905
什么是DOI,文献DOI怎么找? 1654832
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753214