最优控制
动态规划
趋同(经济学)
控制理论(社会学)
自适应控制
控制器(灌溉)
数学优化
数学证明
数学
倒立摆
线性系统
计算机科学
班级(哲学)
控制(管理)
非线性系统
量子力学
生物
经济增长
几何学
物理
数学分析
人工智能
经济
农学
作者
Bo Pang,Zhong‐Ping Jiang
标识
DOI:10.1109/tac.2020.2987313
摘要
This article studies the infinite-horizon adaptive optimal control of continuous-time linear periodic (CTLP) systems. A novel value iteration (VI) based off-policy adaptive dynamic programming (ADP) algorithm is proposed for a general class of CTLP systems, so that approximate optimal solutions can be obtained directly from the collected data, without the exact knowledge of system dynamics. Under mild conditions, the proofs on uniform convergence of the proposed algorithm to the optimal solutions are given for both the model-based and model-free cases. The VI-based ADP algorithm is able to find suboptimal controllers without assuming the knowledge of an initial stabilizing controller. Application to the optimal control of a triple inverted pendulum subjected to a periodically varying load demonstrates the feasibility and effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI