This paper investigates the homoclinic orbits and chaos in the generalized Lorenz system. Using center manifold theory and Lyapunov functions, we get non-existence conditions of homoclinic orbits associated with the origin. The existence conditions of the homoclinic orbits are obtained by Fishing Principle. Therefore, sufficient and necessary conditions of existence of homoclinic orbits associated with the origin are given. Furthermore, with the broken of the homoclinic orbits, we show that the chaos is in the sense generalized Shil'nikov homoclinic criterion.