同宿轨道
数学
混乱的
洛伦兹系统
歧管(流体力学)
中央歧管
稳定流形
同宿分支
李雅普诺夫指数
吸引子
纯数学
异斜眶
物理
数学分析
分叉
非线性系统
计算机科学
霍普夫分叉
量子力学
机械工程
人工智能
工程类
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2019-09-16
卷期号:25 (3): 1097-1108
被引量:3
标识
DOI:10.3934/dcdsb.2019210
摘要
This paper investigates the homoclinic orbits and chaos in the generalized Lorenz system. Using center manifold theory and Lyapunov functions, we get non-existence conditions of homoclinic orbits associated with the origin. The existence conditions of the homoclinic orbits are obtained by Fishing Principle. Therefore, sufficient and necessary conditions of existence of homoclinic orbits associated with the origin are given. Furthermore, with the broken of the homoclinic orbits, we show that the chaos is in the sense generalized Shil'nikov homoclinic criterion.
科研通智能强力驱动
Strongly Powered by AbleSci AI