清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust and Adaptive Optimal Control Methods for a Hybrid Neuroprosthesis

神经假体 功能性电刺激 外骨骼 康复工程 计算机科学 动力外骨骼 控制器(灌溉) 控制理论(社会学) 模型预测控制 自适应控制 控制工程 工程类 控制(管理) 物理医学与康复 模拟 康复 人工智能 医学 物理疗法 刺激 内科学 农学 生物
作者
Xuefeng Bao
链接
摘要

Functional electrical stimulation (FES) is an external application of electrical pulses to skeletal muscles to produce desired limb movements. It is prescribed as a rehabilitation intervention to restore standing and walking functions in people with paraplegia. However, its clinical implementation is hindered by a rapid onset of muscle fatigue that limits its use for longer durations. To overcome the FES-induced muscle fatigue, hybrid neuroprostheses that combine FES with powered exoskeletons were proposed recently. However, how to coordinate FES and powered exoskeleton in a hybrid neuroprosthesis still remains an open issue. The long-term goal of this research is to develop control methods that can optimally coordinate FES and the powered exoskeleton by considering muscle fatigue dynamics during standing and walking activities. The research objective in this dissertation was to derive robust and adaptive optimal control methods for two hybrid neuroprostheses: a hybrid leg extension machine (HLEM) and a full lower-body neuroprosthesis (FLBN). Firstly, a model predictive control (MPC) method that coordinates FES and an electric motor in the HLEM is developed. However, due to inaccurate system identification, day-today variations in the model, and partially measurable state, it is challenging to implement this method in a clinical setting. Therefore, robust and adaptive versions of the MPC method were derived. To overcome modeling uncertainties, a tube-based robust MPC was derived. This MPC has a feedback controller that can drive the actual state into a region centered by the nominal state. This ensures recursive feasibility and stability despite disturbances. Later, a recurrent neural network (RNN) was developed to capture the non-autonomous behavior in the musculoskeletal system, and then a nonlinear MPC and a reinforcement learning (RL) method were derived to sub-optimally compute the control actions for the system. To achieve a standing-up motion, a ratio-allocation method was developed to determine the ratio of the FES-induced torque to the motor torque at the knee joint. The dynamically varied estimated muscle fatigue was used as an index that guided the optimal allocation. Experiments were performed to validate the robust and adaptive methods. The results show a potential of the proposed methods for clinical implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
常有李完成签到,获得积分10
17秒前
归海凡儿完成签到,获得积分10
21秒前
方白秋完成签到,获得积分0
51秒前
量子星尘发布了新的文献求助10
1分钟前
qiongqiong完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Criminology34发布了新的文献求助100
2分钟前
2分钟前
2分钟前
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
Criminology34发布了新的文献求助100
2分钟前
科研小贩发布了新的文献求助10
2分钟前
脑洞疼应助风从海上来采纳,获得10
2分钟前
如意葶完成签到 ,获得积分10
3分钟前
daixan89完成签到 ,获得积分10
3分钟前
3分钟前
顾矜应助科研小贩采纳,获得10
3分钟前
左右发布了新的文献求助10
3分钟前
3分钟前
Frecklesss发布了新的文献求助10
3分钟前
小马甲应助科研辣鸡采纳,获得10
3分钟前
Ttimer完成签到,获得积分10
3分钟前
慕辞完成签到,获得积分10
3分钟前
CodeCraft应助左右采纳,获得10
3分钟前
Frecklesss完成签到,获得积分10
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
科研通AI6应助Criminology34采纳,获得300
4分钟前
王雪晗完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
zh完成签到,获得积分10
4分钟前
4分钟前
阳光的丹雪完成签到,获得积分10
5分钟前
风从海上来完成签到,获得积分20
5分钟前
5分钟前
5分钟前
科研小贩发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658192
求助须知:如何正确求助?哪些是违规求助? 4818285
关于积分的说明 15080986
捐赠科研通 4816616
什么是DOI,文献DOI怎么找? 2577512
邀请新用户注册赠送积分活动 1532403
关于科研通互助平台的介绍 1491057