亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust and Adaptive Optimal Control Methods for a Hybrid Neuroprosthesis

神经假体 功能性电刺激 外骨骼 康复工程 计算机科学 动力外骨骼 控制器(灌溉) 控制理论(社会学) 模型预测控制 自适应控制 控制工程 工程类 控制(管理) 物理医学与康复 模拟 康复 人工智能 医学 物理疗法 刺激 内科学 农学 生物
作者
Xuefeng Bao
链接
摘要

Functional electrical stimulation (FES) is an external application of electrical pulses to skeletal muscles to produce desired limb movements. It is prescribed as a rehabilitation intervention to restore standing and walking functions in people with paraplegia. However, its clinical implementation is hindered by a rapid onset of muscle fatigue that limits its use for longer durations. To overcome the FES-induced muscle fatigue, hybrid neuroprostheses that combine FES with powered exoskeletons were proposed recently. However, how to coordinate FES and powered exoskeleton in a hybrid neuroprosthesis still remains an open issue. The long-term goal of this research is to develop control methods that can optimally coordinate FES and the powered exoskeleton by considering muscle fatigue dynamics during standing and walking activities. The research objective in this dissertation was to derive robust and adaptive optimal control methods for two hybrid neuroprostheses: a hybrid leg extension machine (HLEM) and a full lower-body neuroprosthesis (FLBN). Firstly, a model predictive control (MPC) method that coordinates FES and an electric motor in the HLEM is developed. However, due to inaccurate system identification, day-today variations in the model, and partially measurable state, it is challenging to implement this method in a clinical setting. Therefore, robust and adaptive versions of the MPC method were derived. To overcome modeling uncertainties, a tube-based robust MPC was derived. This MPC has a feedback controller that can drive the actual state into a region centered by the nominal state. This ensures recursive feasibility and stability despite disturbances. Later, a recurrent neural network (RNN) was developed to capture the non-autonomous behavior in the musculoskeletal system, and then a nonlinear MPC and a reinforcement learning (RL) method were derived to sub-optimally compute the control actions for the system. To achieve a standing-up motion, a ratio-allocation method was developed to determine the ratio of the FES-induced torque to the motor torque at the knee joint. The dynamically varied estimated muscle fatigue was used as an index that guided the optimal allocation. Experiments were performed to validate the robust and adaptive methods. The results show a potential of the proposed methods for clinical implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助陈C采纳,获得10
4秒前
科研通AI5应助郭燥采纳,获得10
11秒前
w1x2123完成签到,获得积分10
18秒前
单薄归尘完成签到 ,获得积分10
19秒前
葱饼完成签到 ,获得积分10
25秒前
星河完成签到,获得积分10
27秒前
caowen完成签到 ,获得积分10
29秒前
落后紫夏完成签到,获得积分10
43秒前
48秒前
50秒前
在水一方应助罗舒采纳,获得10
52秒前
jane发布了新的文献求助10
53秒前
吴糖发布了新的文献求助10
55秒前
56秒前
1分钟前
1分钟前
SYLH应助lewis17采纳,获得10
1分钟前
陈C发布了新的文献求助10
1分钟前
汉堡包应助jane采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
1分钟前
木子水告完成签到,获得积分10
1分钟前
jane完成签到,获得积分10
1分钟前
chujun_cai完成签到 ,获得积分10
1分钟前
CipherSage应助eye采纳,获得10
1分钟前
YU完成签到 ,获得积分10
1分钟前
yu完成签到 ,获得积分10
1分钟前
1分钟前
从容成危完成签到,获得积分10
1分钟前
Able完成签到,获得积分10
1分钟前
木有完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
TangWL完成签到 ,获得积分10
2分钟前
haly完成签到 ,获得积分10
2分钟前
chenjzhuc完成签到,获得积分10
2分钟前
2分钟前
eye发布了新的文献求助10
2分钟前
cc123完成签到,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176