Robust and Adaptive Optimal Control Methods for a Hybrid Neuroprosthesis

神经假体 功能性电刺激 外骨骼 康复工程 计算机科学 动力外骨骼 控制器(灌溉) 控制理论(社会学) 模型预测控制 自适应控制 控制工程 工程类 控制(管理) 物理医学与康复 模拟 康复 人工智能 医学 物理疗法 刺激 内科学 农学 生物
作者
Xuefeng Bao
链接
摘要

Functional electrical stimulation (FES) is an external application of electrical pulses to skeletal muscles to produce desired limb movements. It is prescribed as a rehabilitation intervention to restore standing and walking functions in people with paraplegia. However, its clinical implementation is hindered by a rapid onset of muscle fatigue that limits its use for longer durations. To overcome the FES-induced muscle fatigue, hybrid neuroprostheses that combine FES with powered exoskeletons were proposed recently. However, how to coordinate FES and powered exoskeleton in a hybrid neuroprosthesis still remains an open issue. The long-term goal of this research is to develop control methods that can optimally coordinate FES and the powered exoskeleton by considering muscle fatigue dynamics during standing and walking activities. The research objective in this dissertation was to derive robust and adaptive optimal control methods for two hybrid neuroprostheses: a hybrid leg extension machine (HLEM) and a full lower-body neuroprosthesis (FLBN). Firstly, a model predictive control (MPC) method that coordinates FES and an electric motor in the HLEM is developed. However, due to inaccurate system identification, day-today variations in the model, and partially measurable state, it is challenging to implement this method in a clinical setting. Therefore, robust and adaptive versions of the MPC method were derived. To overcome modeling uncertainties, a tube-based robust MPC was derived. This MPC has a feedback controller that can drive the actual state into a region centered by the nominal state. This ensures recursive feasibility and stability despite disturbances. Later, a recurrent neural network (RNN) was developed to capture the non-autonomous behavior in the musculoskeletal system, and then a nonlinear MPC and a reinforcement learning (RL) method were derived to sub-optimally compute the control actions for the system. To achieve a standing-up motion, a ratio-allocation method was developed to determine the ratio of the FES-induced torque to the motor torque at the knee joint. The dynamically varied estimated muscle fatigue was used as an index that guided the optimal allocation. Experiments were performed to validate the robust and adaptive methods. The results show a potential of the proposed methods for clinical implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分10
刚刚
ranjeah完成签到 ,获得积分10
刚刚
1秒前
得之我幸完成签到,获得积分10
2秒前
3秒前
激情的自行车完成签到,获得积分10
4秒前
4秒前
白蓝红完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
JamesPei应助科研小白采纳,获得10
6秒前
深情安青应助runtang采纳,获得30
6秒前
songcy7完成签到,获得积分10
6秒前
烟花应助六芒星采纳,获得10
7秒前
andy_lee发布了新的文献求助10
7秒前
8秒前
司徒水绿完成签到 ,获得积分10
8秒前
嘻嘻嘻发布了新的文献求助10
8秒前
削皮柚子发布了新的文献求助10
9秒前
俭朴蜜蜂发布了新的文献求助200
10秒前
依夏祭完成签到,获得积分10
11秒前
cc完成签到 ,获得积分10
11秒前
11秒前
天天快乐应助粤十一采纳,获得10
12秒前
YiJin_Wang发布了新的文献求助10
13秒前
乐情发布了新的文献求助20
13秒前
16秒前
wxs发布了新的文献求助10
16秒前
可爱的函函应助酷酷巧蟹采纳,获得10
17秒前
17秒前
blablawindy发布了新的文献求助10
18秒前
科研小白发布了新的文献求助10
19秒前
李爱国应助嘿咻采纳,获得10
19秒前
19秒前
19秒前
Steven发布了新的文献求助10
20秒前
20秒前
迟有朝完成签到,获得积分10
22秒前
崔佳慧发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206