Fabrication of 2D/2D nanosheet heterostructures of ZIF-derived Co3S4 and g-C3N4 for asymmetric supercapacitors with superior cycling stability

纳米片 制作 超级电容器 异质结 材料科学 结晶学 电容 纳米技术 光电子学 化学 电极 物理化学 医学 病理 替代医学
作者
Weiwei Li,Youjing Li,Cui Yang,Qingxiang Ma,Kai Tao,Lei Han
出处
期刊:Dalton Transactions [Royal Society of Chemistry]
卷期号:49 (40): 14017-14029 被引量:45
标识
DOI:10.1039/d0dt02400g
摘要

Metal sulfides with high activity are favorable electrode materials for supercapacitors. However, their relatively inferior electronic conductivity and poor stability in alkaline electrolyte solutions impede their applications. To overcome these drawbacks, herein, 2D/2D nanosheet heterostructures of Co3S4 and g-C3N4 have been successfully fabricated by a facile method that involves the in situ growth of 2D Co-based zeolitic imidazolate framework (Co-ZIF-L) crystals on g-C3N4 nanosheets followed by subsequent sulfurization. The as-prepared Co3S4/g-C3N4-10 exhibits a largely enhanced specific capacity (415.0 C g-1 at 0.5 A g-1) in comparison with solitary g-C3N4 (18.9 C g-1) and Co3S4 (194.4 C g-1) derived from Co-ZIF-L. Furthermore, it also displays good rate capability (54.5% retention at 10 A g-1). The asymmetric supercapacitor fabricated from Co3S4/g-C3N4-10 and activated carbon electrodes exhibits an outstanding energy density of 35.7 W h kg-1 at a high power density of 850.2 W kg-1. Most importantly, the asymmetric supercapacitor demonstrates an ultrahigh cycling durability with only 1.9% capacitance loss after 10 000 cycles at 10 A g-1. This superior electrochemical performance can be attributed to the unique 2D/2D nanosheet heterostructures providing rich active sites, short ion diffusion pathways, fast charge transfer as well as improved conductivity and mechanic stability. This work may pave the way for a rational design of the heterostructures of metal sulfides and g-C3N4 for electrochemical energy storage devices with a long cycling lifespan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助调皮静竹采纳,获得10
刚刚
刚刚
慕青应助谦让水香采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
双人鱼life完成签到 ,获得积分10
3秒前
完美世界应助梧桐雨210采纳,获得10
3秒前
3秒前
科视发布了新的文献求助10
5秒前
5秒前
5秒前
完美世界应助shuangcheng采纳,获得20
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
淡然以蓝完成签到 ,获得积分10
7秒前
8秒前
SaberLee完成签到,获得积分10
8秒前
邓代容发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
sure完成签到 ,获得积分10
11秒前
12秒前
12秒前
LL发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
fffff完成签到,获得积分10
14秒前
科研通AI5应助AAA888采纳,获得10
14秒前
田様应助周杰伦采纳,获得10
14秒前
14秒前
又得起名了完成签到,获得积分10
15秒前
orixero应助bigxianyu采纳,获得10
16秒前
liu完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771