哈密顿量(控制论)
数学
标量(数学)
趋同(经济学)
应用数学
非线性系统
变量(数学)
守恒定律
非线性薛定谔方程
薛定谔方程
数学分析
数学优化
物理
量子力学
经济
经济增长
几何学
作者
Alexandre Poulain,Katharina Schratz
出处
期刊:Ima Journal of Numerical Analysis
日期:2021-11-18
卷期号:42 (4): 2853-2883
被引量:2
标识
DOI:10.1093/imanum/drab082
摘要
Abstract We carry out the convergence analysis of the scalar auxiliary variable (SAV) method applied to the nonlinear Schrödinger equation, which preserves a modified Hamiltonian on the discrete level. We derive a weak and strong convergence result, establish second-order global error bounds and present longtime error estimates on the modified Hamiltonian. In addition, we illustrate the favorable energy conservation of the SAV method compared to classical splitting schemes in certain applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI