亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Clustering with LSTM for Vital Signs Separation in Contact-free Heart Rate Estimation

心跳 光谱图 计算机科学 聚类分析 人工智能 模式识别(心理学) 源分离 自回归模型 语音识别 分割 数学 统计 计算机安全
作者
Chen Ye,Guan Gui,Tomoaki Ohtsuki
标识
DOI:10.1109/icc40277.2020.9149328
摘要

So far, most separation approaches of vital signs such as heartbeat and respiration, are implemented based on linear mixtures. However, some literatures have reported that non-linear mixtures actually occur in the associated applications, e.g., heart rate (HR) estimation with Doppler radar, where the simple linear demixing architecture may limit the effect of source separation. In addition, the human motions during HR measurement further complicate the mixing processes. The issue motivates us to exploit a more suitable separation approach to deal with contact-free HR estimation, considering non-linear mixtures including motions. A semi-supervised deep clustering (DC) is proposed to separate the three mixed sources of heartbeat, respiration, and motions, by segmenting the spectrogram of Doppler signal. First, through training a deep recurrent neural network (RNN) with long short-term memory (LSTM) via heartbeat/respiration-only data, the embeddings to each frame-sample from spectrogram can be acquired, which enables feature optimization in a lower dimensional space. Then, in the test phase, K-means clusters the embeddings associated with each source, to infer the masks used for spectrogram segmentation. The proposed deep clustering has three main strengths: It (i) gets rid of the restriction of mixture class, relying on data mining; (ii) can handle three-source mixtures by training two sorts of source-independent samples; (iii) only requires the mixtures from single-channel. The HR measurement experiments on subjects' sitting still and typing, validate the improvements of accuracy and robustness by our proposal, over some prevailing approaches in signal decomposition or separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joanna完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
17秒前
26秒前
48秒前
大方的黑猫完成签到,获得积分10
51秒前
研友_Lk9Y9Z发布了新的文献求助10
53秒前
55秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
研友_Lk9Y9Z完成签到,获得积分10
1分钟前
顺顺完成签到 ,获得积分10
1分钟前
outlast完成签到,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
CHRIS发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
烟花应助科研通管家采纳,获得30
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小雨点完成签到 ,获得积分10
4分钟前
CHRIS完成签到,获得积分10
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
比比谁的速度快应助swayqur采纳,获得30
4分钟前
SciGPT应助jinoir采纳,获得10
5分钟前
5分钟前
5分钟前
jinoir发布了新的文献求助10
5分钟前
YYY发布了新的文献求助10
5分钟前
成就大白菜真实的钥匙完成签到 ,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015140
求助须知:如何正确求助?哪些是违规求助? 3555113
关于积分的说明 11317861
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983