Deep Clustering with LSTM for Vital Signs Separation in Contact-free Heart Rate Estimation

心跳 光谱图 计算机科学 聚类分析 人工智能 模式识别(心理学) 源分离 自回归模型 语音识别 分割 数学 统计 计算机安全
作者
Chen Ye,Guan Gui,Tomoaki Ohtsuki
标识
DOI:10.1109/icc40277.2020.9149328
摘要

So far, most separation approaches of vital signs such as heartbeat and respiration, are implemented based on linear mixtures. However, some literatures have reported that non-linear mixtures actually occur in the associated applications, e.g., heart rate (HR) estimation with Doppler radar, where the simple linear demixing architecture may limit the effect of source separation. In addition, the human motions during HR measurement further complicate the mixing processes. The issue motivates us to exploit a more suitable separation approach to deal with contact-free HR estimation, considering non-linear mixtures including motions. A semi-supervised deep clustering (DC) is proposed to separate the three mixed sources of heartbeat, respiration, and motions, by segmenting the spectrogram of Doppler signal. First, through training a deep recurrent neural network (RNN) with long short-term memory (LSTM) via heartbeat/respiration-only data, the embeddings to each frame-sample from spectrogram can be acquired, which enables feature optimization in a lower dimensional space. Then, in the test phase, K-means clusters the embeddings associated with each source, to infer the masks used for spectrogram segmentation. The proposed deep clustering has three main strengths: It (i) gets rid of the restriction of mixture class, relying on data mining; (ii) can handle three-source mixtures by training two sorts of source-independent samples; (iii) only requires the mixtures from single-channel. The HR measurement experiments on subjects' sitting still and typing, validate the improvements of accuracy and robustness by our proposal, over some prevailing approaches in signal decomposition or separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助joleisalau采纳,获得10
刚刚
simon完成签到 ,获得积分10
刚刚
EJChen应助yumi采纳,获得10
刚刚
zimin应助金金采纳,获得10
刚刚
future完成签到,获得积分10
1秒前
星城浮轩完成签到 ,获得积分10
1秒前
幽默觅翠完成签到,获得积分10
1秒前
Mmm完成签到,获得积分10
1秒前
zheng華发布了新的文献求助10
2秒前
傻傻的马里奥完成签到 ,获得积分10
2秒前
任生平完成签到,获得积分10
3秒前
田様应助霸气咖啡豆采纳,获得30
3秒前
3秒前
4秒前
冷酷三德完成签到 ,获得积分10
4秒前
4秒前
NexusExplorer应助Yang采纳,获得10
4秒前
5秒前
石头完成签到,获得积分10
5秒前
5秒前
xzh完成签到,获得积分10
5秒前
求助哥完成签到,获得积分10
5秒前
wanci应助colossus0257采纳,获得20
5秒前
黄叶飞完成签到,获得积分10
6秒前
香蕉觅云应助GCY采纳,获得10
6秒前
ffw1完成签到,获得积分10
6秒前
春风完成签到,获得积分10
6秒前
7秒前
金金完成签到,获得积分10
7秒前
ccs完成签到,获得积分10
7秒前
小张z完成签到,获得积分10
7秒前
幽兰完成签到,获得积分20
7秒前
俭朴舞仙完成签到 ,获得积分10
7秒前
酷酷的乐菱完成签到,获得积分10
8秒前
LongY完成签到,获得积分10
9秒前
pengyuyan发布了新的文献求助10
9秒前
yy发布了新的文献求助10
9秒前
Honahlee发布了新的文献求助10
9秒前
脑洞疼应助Nancy采纳,获得10
9秒前
无情的匪完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269562
求助须知:如何正确求助?哪些是违规求助? 4427995
关于积分的说明 13781921
捐赠科研通 4305390
什么是DOI,文献DOI怎么找? 2362762
邀请新用户注册赠送积分活动 1358427
关于科研通互助平台的介绍 1321122