亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Clustering with LSTM for Vital Signs Separation in Contact-free Heart Rate Estimation

心跳 光谱图 计算机科学 聚类分析 人工智能 模式识别(心理学) 源分离 自回归模型 语音识别 分割 数学 统计 计算机安全
作者
Chen Ye,Guan Gui,Tomoaki Ohtsuki
标识
DOI:10.1109/icc40277.2020.9149328
摘要

So far, most separation approaches of vital signs such as heartbeat and respiration, are implemented based on linear mixtures. However, some literatures have reported that non-linear mixtures actually occur in the associated applications, e.g., heart rate (HR) estimation with Doppler radar, where the simple linear demixing architecture may limit the effect of source separation. In addition, the human motions during HR measurement further complicate the mixing processes. The issue motivates us to exploit a more suitable separation approach to deal with contact-free HR estimation, considering non-linear mixtures including motions. A semi-supervised deep clustering (DC) is proposed to separate the three mixed sources of heartbeat, respiration, and motions, by segmenting the spectrogram of Doppler signal. First, through training a deep recurrent neural network (RNN) with long short-term memory (LSTM) via heartbeat/respiration-only data, the embeddings to each frame-sample from spectrogram can be acquired, which enables feature optimization in a lower dimensional space. Then, in the test phase, K-means clusters the embeddings associated with each source, to infer the masks used for spectrogram segmentation. The proposed deep clustering has three main strengths: It (i) gets rid of the restriction of mixture class, relying on data mining; (ii) can handle three-source mixtures by training two sorts of source-independent samples; (iii) only requires the mixtures from single-channel. The HR measurement experiments on subjects' sitting still and typing, validate the improvements of accuracy and robustness by our proposal, over some prevailing approaches in signal decomposition or separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助深海采纳,获得10
3秒前
Jasper应助YHK采纳,获得10
13秒前
香蕉觅云应助sy采纳,获得10
19秒前
开胃咖喱完成签到,获得积分10
19秒前
22秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
27秒前
sy发布了新的文献求助10
32秒前
小凉完成签到 ,获得积分10
40秒前
41秒前
42秒前
好好学习发布了新的文献求助10
45秒前
47秒前
在水一方应助好好学习采纳,获得10
51秒前
53秒前
2520发布了新的文献求助10
57秒前
科研通AI5应助yushe采纳,获得30
57秒前
科研通AI5应助高金龙采纳,获得10
58秒前
好好学习完成签到,获得积分10
1分钟前
1分钟前
Jemery发布了新的文献求助10
1分钟前
萝卜丁完成签到 ,获得积分0
1分钟前
想毕业的第n天完成签到,获得积分10
1分钟前
1分钟前
爆米花应助烨然采纳,获得10
1分钟前
1分钟前
1分钟前
英姑应助庾稀采纳,获得10
1分钟前
orixero应助小魔笛采纳,获得10
1分钟前
1分钟前
复杂不二完成签到,获得积分10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
兼听则明发布了新的文献求助100
2分钟前
2分钟前
2分钟前
思源应助堕落的大金毛采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575037
求助须知:如何正确求助?哪些是违规求助? 3145003
关于积分的说明 9457903
捐赠科研通 2846311
什么是DOI,文献DOI怎么找? 1564755
邀请新用户注册赠送积分活动 732613
科研通“疑难数据库(出版商)”最低求助积分说明 719188