亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long Short-Term Memory-Based Human-Driven Vehicle Longitudinal Trajectory Prediction in a Connected and Autonomous Vehicle Environment

更安全的 计算机科学 市场渗透 实时计算 弹道 流量(计算机网络) 期限(时间) 模拟 工程类 计算机安全 物理 量子力学 天文 电气工程
作者
Lei Lin,Siyuan Gong,Srinivas Peeta,Xia Wu
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (6): 380-390 被引量:19
标识
DOI:10.1177/0361198121993471
摘要

The advent of connected and autonomous vehicles (CAVs) will change driving behavior and travel environment, and provide opportunities for safer, smoother, and smarter road transportation. During the transition from the current human-driven vehicles (HDVs) to a fully CAV traffic environment, the road traffic will consist of a “mixed” traffic flow of HDVs and CAVs. Equipped with multiple sensors and vehicle-to-vehicle communications, a CAV can track surrounding HDVs and receive trajectory data of other CAVs in communication range. These trajectory data can be leveraged with recent advances in deep learning methods to potentially predict the trajectories of a target HDV. Based on these predictions, CAVs can react to circumvent or mitigate traffic flow oscillations and accidents. This study develops attention-based long short-term memory (LSTM) models for HDV longitudinal trajectory prediction in a mixed flow environment. The model and a few other LSTM variants are tested on the Next Generation Simulation US 101 dataset with different CAV market penetration rates (MPRs). Results illustrate that LSTM models that utilize historical trajectories from surrounding CAVs perform much better than those that ignore information even when the MPR is as low as 0.2. The attention-based LSTM models can provide more accurate multi-step longitudinal trajectory predictions. Further, grid-level average attention weight analysis is conducted and the CAVs with higher impact on the target HDV’s future trajectories are identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulubeans完成签到,获得积分20
12秒前
15秒前
22秒前
领导范儿应助lulubeans采纳,获得30
47秒前
自然涵易完成签到,获得积分10
57秒前
58秒前
1分钟前
1分钟前
自然涵易发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
研友_LJajX8发布了新的文献求助10
2分钟前
2分钟前
2分钟前
模糊中正应助luckss采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
luckss发布了新的文献求助10
3分钟前
Powder发布了新的文献求助10
3分钟前
3分钟前
西安浴日光能赵炜完成签到,获得积分10
3分钟前
3分钟前
那奇泡芙发布了新的文献求助10
4分钟前
小二郎应助那奇泡芙采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
luckss发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
搜集达人应助舒服的觅夏采纳,获得10
6分钟前
mrjohn完成签到,获得积分10
6分钟前
6分钟前
6分钟前
HLT完成签到 ,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983996
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697