已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems

量子点 半导体 发光 材料科学 光电子学 凝聚态物理 物理
作者
A. D. Yoffe
出处
期刊:Advances in Physics [Taylor & Francis]
卷期号:50 (1): 1-208 被引量:1192
标识
DOI:10.1080/00018730010006608
摘要

This review seeks to extend the scope of both the experimental and theoreticalwork carried out since I completed my 1993 review on the electronic, optical, andto a lesser extent, the transport properties of a variety of semiconductor quantumdots (QDs). In addition to the many advances that have been made on topics suchas quantum confinement effects (QCE), optical and luminescence properties,energy levels, and theoretical models that were dealt with in outline then, anumber of new themes have emerged. These include detailed studies on singleQDs such as InAs, InP, CuCl, etc, and this became possible due to thedevelopment of several microtechniques such as scanning near field opticalmicroscopy, SNOM or NSOM, as well as the use of improved growth proceduressuch as those involving MBE and the Stranski-Krastanow (SK) growth method, orby better chemical processing. By concentrating on single dots, it has provedpossible to limit the extent of the line broadening for the optical absorption andluminescence peaks due to the variation in dot sizes in the more usual types of films used. Line half widths (FWHM) in the microvolt region have now been recorded, and this has helped in the identification and resolution of excitons, biexcitons, higher excited states, and both positive and negative charged excitons, when these lie close together in energy. Quantum dots such as CdSe and CuCl which can be considered as the model systems have been the most extensively investigated, and in the case of CdSe dots, reasonable theoretical models have been developed to predict energy levels and optical properties as a function of dot size even for the difficult case of strong confinement, when R ≤ αB, the bulk exciton Bohr radius. Although problems still exist in relating predictions to all the experimental data, they have helped to identify exciton features near to and above the first main absorption peak and other optoelectronic features. A good deal of effort has now gone into the study of the III-V systems such as InP, InAs, GaAs, and GaN QDs, as well as on porous Si (PS) and Si and Ge dots. This has been largely driven by the possibility that devices such as lasers, LEDs and devices depending on single electron transport and tunnelling might be developed, an area where there is significant technological potential. For dots such as InAs etc prepared by the SK method, where there is a mismatch in lattice parameters between the InAs and the substrate such as GaAs, the dots tend to have a roughly pyramidal shaped profile, and the dot also sits on a thin InAs wetting layer. Both 2d and 3d ordered arrays of QDs can be formed using this procedure. The photoluminescence (PL) efficiency for such systems can be unexpectedly high, and there have been attempts to explain this effect as being due to the avoidance of the so-called 'phonon bottleneck' by Auger type transitions, but this is still a controversial matter. Other phenomena that are discussed include: (1) exciton- phonon coupling interactions, particularly as applied to QDs such as those formed from CuCl, CuBr, PbS, etc.; (2) coupled QDs for which dot- dot interactions need to be considered; (3) porous Si (PS), a system of considerable interest since the observation of strong PL emission features in the PL spectra by Canham in 1990, even though Si has an indirect gap, and on the practical side there has been much effort in the development of devices such as lasers, LEDs and other electroluminescence (EL) devices, and more recently for biological and medical applications, where PS, because of its porous structure, can be a host lattice for biochemical compounds in a manner similar to some zeolites. However the structure of PS is rather complex, and filaments, embryonic Si dots, as well as well formed dots, oxide interfaces of uncertain composition, and compounds containing hydrogen may all be present, and this makes it difficult to make reasonable assignments to some of the optical features present in the spectra. (4) Type II QDs that concern spatially indirect systems, and this can refer to both space and wave vector k. Instead of the electron e and hole h for an e- h pair (exciton) both residing in dot, for most of the Type II systems the h resides in the dot while the e is in the matrix in which the dots are distributed or at the interfaces. The systems considered depend on the band of sets, and include combinations such as GaAs- AlAs and CdTe- HgTe etc. (5) Hydrogenic-type donors in semiconductor QDs. (6) Excitons, biexcitons, charged excitons (both positive and negative), or trions. (7) Quantum dot- quantum well (QD-QW) combinations, also described as thin film-QD or core- shell composites, for example CdS QDs coated with a thin layer of the smaller band gap semiconductor HgS acting as a QW followed by a further CdS coating or 'clad' or 'shell'. (8) QD- conjugated organic polymer composites, a topic developed by Alivisatos, Greenham and Bawendi and their colleagues in the mid nineties, where the polymer acts as a hole conductor in an EL or LED type of device, where the wavelength of the emitted light due to e- h recombination that occurs preferably near the interface, can be varied by altering the QD radius. The possible formation of hybrid Mott-Wannier and Frenkel excitons is also briefly considered. (9) The variation of the QD dielectric constant with QD size E 2(R), has been considered by several investigators, their calculations suggest that the dielectric constant decreases substantially as R is reduced. This effect has been ignored in many contributions even though E 2 enters into the equations dealing with QSE or quantum size effects, a B, E b, and oscillator strengths (OS), and its omission will influence the calculated estimates for these quantities. (10) Finally, single electron transport and tunnelling in single and coupled QDs, and the Coulomb blockade (CB) are considered, but only in outline since this is a large problem, but it is clearly an important topic particularly in connection with the development of computing and information processing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
khh完成签到 ,获得积分10
1秒前
Rainbow完成签到 ,获得积分10
1秒前
烤乳猪完成签到 ,获得积分10
2秒前
2秒前
6秒前
8秒前
orixero应助Yuki采纳,获得10
8秒前
Jemma完成签到 ,获得积分10
10秒前
青树柠檬完成签到 ,获得积分10
10秒前
GDD发布了新的文献求助10
10秒前
糖豆子完成签到,获得积分10
15秒前
时闲发布了新的文献求助10
16秒前
沉默白猫完成签到 ,获得积分10
18秒前
bryceeluo完成签到,获得积分10
18秒前
祁问儿完成签到 ,获得积分10
19秒前
在水一方应助虚幻的莞采纳,获得10
19秒前
21秒前
hhhh完成签到 ,获得积分20
23秒前
23秒前
孤标傲世完成签到 ,获得积分10
24秒前
loewy完成签到,获得积分10
24秒前
xuexi发布了新的文献求助10
25秒前
斯文败类应助元宝团子采纳,获得10
27秒前
pterionGao完成签到 ,获得积分10
31秒前
33秒前
pain豆先生完成签到 ,获得积分10
33秒前
kecheng应助时闲采纳,获得10
34秒前
35秒前
35秒前
李科研完成签到,获得积分20
35秒前
fantianhui完成签到 ,获得积分10
37秒前
Billy发布了新的文献求助10
38秒前
orixero应助科研通管家采纳,获得10
38秒前
卢建军应助科研通管家采纳,获得30
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
六沉完成签到 ,获得积分10
39秒前
xuexi完成签到,获得积分10
39秒前
yiyi完成签到,获得积分10
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980806
求助须知:如何正确求助?哪些是违规求助? 3524526
关于积分的说明 11221922
捐赠科研通 3261940
什么是DOI,文献DOI怎么找? 1801004
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807342