miRCom: Tensor Completion Integrating Multi-View Information to Deduce the Potential Disease-Related miRNA-miRNA Pairs

小RNA 计算生物学 机制(生物学) 张量(固有定义) 计算机科学 疾病 功能(生物学) 模式(遗传算法) 相似性(几何) 生物信息学 人工智能 生物 机器学习 基因 遗传学 数学 医学 图像(数学) 哲学 病理 认识论 纯数学
作者
Pei Liu,Jiawei Luo,Xiangtao Chen
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1747-1759 被引量:12
标识
DOI:10.1109/tcbb.2020.3037331
摘要

MicroRNAs (miRNAs) are consistently capable of regulating gene expression synergistically in a combination mode and play a key role in various biological processes associated with the initiation and development of human diseases, which indicate that comprehending the synergistic molecular mechanism of miRNAs may facilitate understanding the pathogenesis of diseases or even overcome it. However, most existing computational methods had an incomprehensive acknowledge of the miRNA synergistic effect on the pathogenesis of complex diseases, or were hard to be extended to a large-scale prediction task of miRNA synergistic combinations for different diseases. In this article, we propose a novel tensor completion framework integrating multi-view miRNAs and diseases information, called miRCom, for the discovery of potential disease-associated miRNA-miRNA pairs. We first construct an incomplete three-order association tensor and several types of similarity matrices based on existing biological knowledge. Then, we formulate an objective function via performing the factorizations of coupled tensor and matrices simultaneously. Finally, we build an optimization schema by adopting the ADMM algorithm. After that, we obtain the prediction of miRNA-miRNA pairs for different diseases from the full tensor. The contrastive experimental results with other approaches verified that miRCom effectively identify the potential disease-related miRNA-miRNA pairs. Moreover, case study results further illustrated that miRNA-miRNA pairs have more biologically significance and prognostic value than single miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
许子健发布了新的文献求助10
2秒前
ganymede发布了新的文献求助10
2秒前
CipherSage应助迷人的含灵采纳,获得10
3秒前
英吉利25发布了新的文献求助10
4秒前
可靠的yi1发布了新的文献求助10
4秒前
四月完成签到 ,获得积分10
5秒前
立里完成签到,获得积分10
5秒前
凉小远发布了新的文献求助10
6秒前
wanci应助宋一丹采纳,获得10
6秒前
李照慧完成签到,获得积分10
6秒前
星空棒棒糖完成签到 ,获得积分10
7秒前
7秒前
斯文败类应助XIGUA采纳,获得10
7秒前
洋洋发布了新的文献求助10
9秒前
10秒前
思源应助可靠的yi1采纳,获得10
10秒前
bb关闭了bb文献求助
10秒前
YANGGG发布了新的文献求助10
11秒前
科研小飞侠完成签到,获得积分10
11秒前
33完成签到,获得积分10
11秒前
12秒前
陈扇完成签到 ,获得积分10
13秒前
阿郑发布了新的文献求助10
13秒前
orixero应助繁荣的安白采纳,获得10
13秒前
Spaz完成签到,获得积分10
13秒前
14秒前
14秒前
遇见完成签到,获得积分20
15秒前
16秒前
16秒前
许子健发布了新的文献求助10
17秒前
mtt应助洋洋采纳,获得10
18秒前
蓓蓓0303发布了新的文献求助10
19秒前
嘟嘟发布了新的文献求助10
19秒前
ohnk发布了新的文献求助10
19秒前
long发布了新的文献求助10
20秒前
Vency应助辞镜采纳,获得30
20秒前
Yuuuuu发布了新的文献求助10
20秒前
Picachu完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493