已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

miRCom: Tensor Completion Integrating Multi-View Information to Deduce the Potential Disease-Related miRNA-miRNA Pairs

小RNA 计算生物学 机制(生物学) 张量(固有定义) 计算机科学 疾病 功能(生物学) 模式(遗传算法) 相似性(几何) 生物信息学 人工智能 生物 机器学习 基因 遗传学 数学 医学 图像(数学) 哲学 病理 认识论 纯数学
作者
Pei Liu,Jiawei Luo,Xiangtao Chen
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1747-1759 被引量:12
标识
DOI:10.1109/tcbb.2020.3037331
摘要

MicroRNAs (miRNAs) are consistently capable of regulating gene expression synergistically in a combination mode and play a key role in various biological processes associated with the initiation and development of human diseases, which indicate that comprehending the synergistic molecular mechanism of miRNAs may facilitate understanding the pathogenesis of diseases or even overcome it. However, most existing computational methods had an incomprehensive acknowledge of the miRNA synergistic effect on the pathogenesis of complex diseases, or were hard to be extended to a large-scale prediction task of miRNA synergistic combinations for different diseases. In this article, we propose a novel tensor completion framework integrating multi-view miRNAs and diseases information, called miRCom, for the discovery of potential disease-associated miRNA-miRNA pairs. We first construct an incomplete three-order association tensor and several types of similarity matrices based on existing biological knowledge. Then, we formulate an objective function via performing the factorizations of coupled tensor and matrices simultaneously. Finally, we build an optimization schema by adopting the ADMM algorithm. After that, we obtain the prediction of miRNA-miRNA pairs for different diseases from the full tensor. The contrastive experimental results with other approaches verified that miRCom effectively identify the potential disease-related miRNA-miRNA pairs. Moreover, case study results further illustrated that miRNA-miRNA pairs have more biologically significance and prognostic value than single miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰冰发布了新的文献求助10
2秒前
2秒前
卡卡罗特完成签到,获得积分20
5秒前
上官若男应助kk采纳,获得10
5秒前
XIXIXI发布了新的文献求助10
5秒前
hugo发布了新的文献求助10
7秒前
9秒前
10秒前
不周完成签到,获得积分20
11秒前
徐逊发布了新的文献求助10
12秒前
阿洁发布了新的文献求助10
13秒前
14秒前
汉堡包应助糊糊采纳,获得10
16秒前
hugo完成签到,获得积分20
17秒前
17秒前
19秒前
英姑应助王槿采纳,获得10
19秒前
阿洁完成签到,获得积分10
19秒前
xhj666发布了新的文献求助10
20秒前
21秒前
21秒前
君寻完成签到 ,获得积分10
22秒前
kk发布了新的文献求助10
23秒前
彭于晏应助科研通管家采纳,获得30
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
24秒前
sci发布了新的文献求助10
24秒前
田様应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
木兆完成签到 ,获得积分10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
24秒前
Ava应助神海采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396