miRCom: Tensor Completion Integrating Multi-View Information to Deduce the Potential Disease-Related miRNA-miRNA Pairs

小RNA 计算生物学 机制(生物学) 张量(固有定义) 计算机科学 疾病 功能(生物学) 模式(遗传算法) 相似性(几何) 生物信息学 人工智能 生物 机器学习 基因 遗传学 数学 医学 图像(数学) 哲学 病理 认识论 纯数学
作者
Pei Liu,Jiawei Luo,Xiangtao Chen
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1747-1759 被引量:12
标识
DOI:10.1109/tcbb.2020.3037331
摘要

MicroRNAs (miRNAs) are consistently capable of regulating gene expression synergistically in a combination mode and play a key role in various biological processes associated with the initiation and development of human diseases, which indicate that comprehending the synergistic molecular mechanism of miRNAs may facilitate understanding the pathogenesis of diseases or even overcome it. However, most existing computational methods had an incomprehensive acknowledge of the miRNA synergistic effect on the pathogenesis of complex diseases, or were hard to be extended to a large-scale prediction task of miRNA synergistic combinations for different diseases. In this article, we propose a novel tensor completion framework integrating multi-view miRNAs and diseases information, called miRCom, for the discovery of potential disease-associated miRNA-miRNA pairs. We first construct an incomplete three-order association tensor and several types of similarity matrices based on existing biological knowledge. Then, we formulate an objective function via performing the factorizations of coupled tensor and matrices simultaneously. Finally, we build an optimization schema by adopting the ADMM algorithm. After that, we obtain the prediction of miRNA-miRNA pairs for different diseases from the full tensor. The contrastive experimental results with other approaches verified that miRCom effectively identify the potential disease-related miRNA-miRNA pairs. Moreover, case study results further illustrated that miRNA-miRNA pairs have more biologically significance and prognostic value than single miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海月完成签到 ,获得积分10
刚刚
深情安青应助西哈哈采纳,获得10
1秒前
Orange应助好好好采纳,获得10
1秒前
小二郎应助韩帅采纳,获得10
2秒前
2秒前
Max发布了新的文献求助10
2秒前
可爱的函函应助欢欢采纳,获得10
4秒前
上好佳完成签到,获得积分10
4秒前
安璃应助开心友儿采纳,获得10
4秒前
SciGPT应助星星采纳,获得10
4秒前
甜蜜笑阳完成签到,获得积分10
5秒前
yinhe发布了新的文献求助20
5秒前
吾猫发布了新的文献求助10
5秒前
虾米发布了新的文献求助10
5秒前
无花果应助摸鱼鱼采纳,获得10
5秒前
wsff发布了新的文献求助10
5秒前
6秒前
田様应助谨慎的冬瓜采纳,获得30
6秒前
6秒前
chen完成签到,获得积分10
6秒前
常尽欢完成签到 ,获得积分10
7秒前
1111发布了新的文献求助10
7秒前
陌东绮潭发布了新的文献求助10
7秒前
甜甜玫瑰应助栗子采纳,获得10
8秒前
土豆侠完成签到,获得积分10
8秒前
8秒前
HEIKU应助dandan采纳,获得10
8秒前
科研通AI2S应助dandan采纳,获得10
8秒前
李伟完成签到,获得积分10
8秒前
8秒前
xjcy应助流星噬月采纳,获得10
9秒前
9秒前
9秒前
9秒前
酷波er应助斑驳的落叶采纳,获得10
10秒前
Berrymeng发布了新的文献求助10
10秒前
sumany诗完成签到,获得积分10
10秒前
毕个业完成签到 ,获得积分10
11秒前
11秒前
安璃关注了科研通微信公众号
11秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221784
求助须知:如何正确求助?哪些是违规求助? 2870476
关于积分的说明 8170735
捐赠科研通 2537406
什么是DOI,文献DOI怎么找? 1369415
科研通“疑难数据库(出版商)”最低求助积分说明 645510
邀请新用户注册赠送积分活动 619208