Rapid Earthquake Association and Location

地震学 地质学 地震位置 序列(生物学) 网格 事件(粒子物理) 点(几何) 诱发地震 大地测量学 数学 几何学 遗传学 量子力学 生物 物理
作者
Miao Zhang,William L. Ellsworth,Gregory C. Beroza
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:90 (6): 2276-2284 被引量:134
标识
DOI:10.1785/0220190052
摘要

ABSTRACT Rapid association of seismic phases and event location are crucial for real‐time seismic monitoring. We propose a new method, named rapid earthquake association and location (REAL), for associating seismic phases and locating seismic events rapidly, simultaneously, and automatically. REAL combines the advantages of both pick‐based and waveform‐based detection and location methods. It associates arrivals of different seismic phases and locates seismic events primarily through counting the number of P and S picks and secondarily from travel‐time residuals. A group of picks are associated with a particular earthquake if there are enough picks within the theoretical travel‐time windows. The location is determined to be at the grid point with the most picks, and if multiple locations have the same maximum number of picks, the grid point among them with smallest travel‐time residuals. We refine seismic locations using a least‐squares location method (VELEST) and a high‐precision relative location method (hypoDD). REAL can be used for rapid seismic characterization due to its computational efficiency. As an example application, we apply REAL to earthquakes in the 2016 central Apennines, Italy, earthquake sequence occurring during a five‐day period in October 2016, midway in time between the two largest earthquakes. We associate and locate more than three times as many events (3341) as are in Italy's National Institute of Geophysics and Volcanology routine catalog (862). The spatial distribution of these relocated earthquakes shows a similar but more concentrated pattern relative to the cataloged events. Our study demonstrates that it is possible to characterize seismicity automatically and quickly using REAL and seismic picks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微纳组刘同完成签到,获得积分10
刚刚
开心的QQ熊完成签到,获得积分10
1秒前
1秒前
共享精神应助俭朴的元绿采纳,获得10
2秒前
丘比特应助lixiang采纳,获得10
2秒前
清酒少年游完成签到,获得积分10
2秒前
NDrDicp完成签到,获得积分10
3秒前
坚强的茗茗完成签到,获得积分10
3秒前
sntyc完成签到 ,获得积分10
3秒前
淡淡的若冰应助清澄采纳,获得10
4秒前
浚稚发布了新的文献求助10
4秒前
5秒前
所所应助盛开的芒果采纳,获得10
5秒前
zhang111完成签到,获得积分10
5秒前
小晓完成签到,获得积分20
6秒前
玩命的静丹完成签到,获得积分10
7秒前
未改完成签到,获得积分10
7秒前
臭臭完成签到,获得积分10
7秒前
guanguan发布了新的文献求助10
8秒前
甜甜圈发布了新的文献求助30
8秒前
ypp完成签到,获得积分10
8秒前
昵称完成签到,获得积分10
8秒前
ttkd11完成签到,获得积分10
9秒前
可靠访蕊完成签到 ,获得积分10
10秒前
Can完成签到,获得积分10
10秒前
11秒前
neurojie发布了新的文献求助10
11秒前
infinite完成签到,获得积分10
11秒前
华仔应助琦琦777采纳,获得10
12秒前
爱吃马铃薯完成签到,获得积分10
12秒前
12秒前
stone完成签到,获得积分10
12秒前
12秒前
LI1完成签到 ,获得积分20
13秒前
A溶大美噶完成签到,获得积分10
14秒前
菜菜鱼完成签到,获得积分10
16秒前
fabulous完成签到,获得积分10
16秒前
清新的夜梦完成签到,获得积分10
16秒前
feitian201861完成签到,获得积分10
16秒前
zhai完成签到,获得积分20
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757