Rapid Earthquake Association and Location

地震学 地质学 地震位置 序列(生物学) 网格 事件(粒子物理) 点(几何) 诱发地震 大地测量学 数学 几何学 遗传学 量子力学 生物 物理
作者
Miao Zhang,William L. Ellsworth,Gregory C. Beroza
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:90 (6): 2276-2284 被引量:134
标识
DOI:10.1785/0220190052
摘要

ABSTRACT Rapid association of seismic phases and event location are crucial for real‐time seismic monitoring. We propose a new method, named rapid earthquake association and location (REAL), for associating seismic phases and locating seismic events rapidly, simultaneously, and automatically. REAL combines the advantages of both pick‐based and waveform‐based detection and location methods. It associates arrivals of different seismic phases and locates seismic events primarily through counting the number of P and S picks and secondarily from travel‐time residuals. A group of picks are associated with a particular earthquake if there are enough picks within the theoretical travel‐time windows. The location is determined to be at the grid point with the most picks, and if multiple locations have the same maximum number of picks, the grid point among them with smallest travel‐time residuals. We refine seismic locations using a least‐squares location method (VELEST) and a high‐precision relative location method (hypoDD). REAL can be used for rapid seismic characterization due to its computational efficiency. As an example application, we apply REAL to earthquakes in the 2016 central Apennines, Italy, earthquake sequence occurring during a five‐day period in October 2016, midway in time between the two largest earthquakes. We associate and locate more than three times as many events (3341) as are in Italy's National Institute of Geophysics and Volcanology routine catalog (862). The spatial distribution of these relocated earthquakes shows a similar but more concentrated pattern relative to the cataloged events. Our study demonstrates that it is possible to characterize seismicity automatically and quickly using REAL and seismic picks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃乘风完成签到,获得积分10
1秒前
Anxinxin完成签到,获得积分10
1秒前
阳佟冬卉完成签到,获得积分10
2秒前
Silence发布了新的文献求助10
2秒前
2秒前
通通通发布了新的文献求助10
3秒前
帅气的秘密完成签到 ,获得积分10
3秒前
领导范儿应助马建国采纳,获得10
3秒前
lysixsixsix完成签到,获得积分10
3秒前
4秒前
jia完成签到,获得积分10
4秒前
欣喜乐天发布了新的文献求助10
4秒前
Kiyotaka完成签到,获得积分10
4秒前
5秒前
季夏发布了新的文献求助10
5秒前
Tingshan发布了新的文献求助20
6秒前
背后的诺言完成签到 ,获得积分20
6秒前
GHOST完成签到,获得积分20
7秒前
7秒前
勤奋的蜗牛完成签到,获得积分20
7秒前
omo发布了新的文献求助10
7秒前
Akim应助糊糊采纳,获得10
8秒前
Zn应助dsjlove采纳,获得10
8秒前
月球宇航员完成签到,获得积分10
8秒前
8秒前
英姑应助亲爱的安德烈采纳,获得10
10秒前
今后应助workwork采纳,获得10
10秒前
10秒前
落后翠柏发布了新的文献求助10
10秒前
淡然凝丹完成签到,获得积分10
10秒前
Y_Jfeng完成签到,获得积分10
11秒前
潼熙甄完成签到 ,获得积分10
12秒前
Lucas应助糖糖采纳,获得10
12秒前
wyblobin发布了新的文献求助10
12秒前
星辰大海应助叶飞荷采纳,获得10
12秒前
wanmiao12完成签到,获得积分10
13秒前
13秒前
14秒前
lmr完成签到,获得积分10
14秒前
gu完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762