Rapid Earthquake Association and Location

地震学 地质学 地震位置 序列(生物学) 网格 事件(粒子物理) 点(几何) 诱发地震 大地测量学 数学 遗传学 物理 几何学 量子力学 生物
作者
Miao Zhang,William L. Ellsworth,Gregory C. Beroza
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:90 (6): 2276-2284 被引量:134
标识
DOI:10.1785/0220190052
摘要

ABSTRACT Rapid association of seismic phases and event location are crucial for real‐time seismic monitoring. We propose a new method, named rapid earthquake association and location (REAL), for associating seismic phases and locating seismic events rapidly, simultaneously, and automatically. REAL combines the advantages of both pick‐based and waveform‐based detection and location methods. It associates arrivals of different seismic phases and locates seismic events primarily through counting the number of P and S picks and secondarily from travel‐time residuals. A group of picks are associated with a particular earthquake if there are enough picks within the theoretical travel‐time windows. The location is determined to be at the grid point with the most picks, and if multiple locations have the same maximum number of picks, the grid point among them with smallest travel‐time residuals. We refine seismic locations using a least‐squares location method (VELEST) and a high‐precision relative location method (hypoDD). REAL can be used for rapid seismic characterization due to its computational efficiency. As an example application, we apply REAL to earthquakes in the 2016 central Apennines, Italy, earthquake sequence occurring during a five‐day period in October 2016, midway in time between the two largest earthquakes. We associate and locate more than three times as many events (3341) as are in Italy's National Institute of Geophysics and Volcanology routine catalog (862). The spatial distribution of these relocated earthquakes shows a similar but more concentrated pattern relative to the cataloged events. Our study demonstrates that it is possible to characterize seismicity automatically and quickly using REAL and seismic picks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助絮甯采纳,获得10
1秒前
兴奋的豆腐乳完成签到,获得积分10
1秒前
2秒前
机智宛秋完成签到,获得积分10
2秒前
Tse完成签到,获得积分10
4秒前
5秒前
李卷完成签到,获得积分10
7秒前
7秒前
FIN应助追风少年湃采纳,获得30
7秒前
大模型应助海格采纳,获得10
8秒前
LL完成签到,获得积分10
10秒前
轻松的剑发布了新的文献求助30
10秒前
桑尼号发布了新的文献求助10
11秒前
11秒前
懒羊羊发布了新的文献求助10
12秒前
12秒前
絮甯完成签到,获得积分10
13秒前
絮甯发布了新的文献求助10
17秒前
Han发布了新的文献求助10
17秒前
桑尼号完成签到,获得积分10
17秒前
背后海亦发布了新的文献求助10
18秒前
阿亮发布了新的文献求助30
18秒前
海格完成签到,获得积分10
18秒前
20秒前
淡定碧玉完成签到 ,获得积分10
21秒前
圆锥香蕉举报nickthename求助涉嫌违规
22秒前
隐形曼青应助楠楠2001采纳,获得10
22秒前
23秒前
科研通AI2S应助lu采纳,获得10
25秒前
xbx1991完成签到,获得积分10
26秒前
打打应助搞怪文轩采纳,获得10
26秒前
谦让鹏涛发布了新的文献求助10
29秒前
柯一一应助kk采纳,获得10
30秒前
柯一一应助kk采纳,获得10
30秒前
柯一一应助kk采纳,获得10
30秒前
xbx1991发布了新的文献求助10
30秒前
柯一一应助kk采纳,获得10
30秒前
柯一一应助kk采纳,获得10
30秒前
柯一一应助kk采纳,获得10
30秒前
柯一一应助kk采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959477
求助须知:如何正确求助?哪些是违规求助? 3505697
关于积分的说明 11125320
捐赠科研通 3237538
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802868