Rapid Earthquake Association and Location

地震学 地质学 地震位置 序列(生物学) 网格 事件(粒子物理) 点(几何) 诱发地震 大地测量学 数学 遗传学 物理 几何学 量子力学 生物
作者
Miao Zhang,William L. Ellsworth,Gregory C. Beroza
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:90 (6): 2276-2284 被引量:134
标识
DOI:10.1785/0220190052
摘要

ABSTRACT Rapid association of seismic phases and event location are crucial for real‐time seismic monitoring. We propose a new method, named rapid earthquake association and location (REAL), for associating seismic phases and locating seismic events rapidly, simultaneously, and automatically. REAL combines the advantages of both pick‐based and waveform‐based detection and location methods. It associates arrivals of different seismic phases and locates seismic events primarily through counting the number of P and S picks and secondarily from travel‐time residuals. A group of picks are associated with a particular earthquake if there are enough picks within the theoretical travel‐time windows. The location is determined to be at the grid point with the most picks, and if multiple locations have the same maximum number of picks, the grid point among them with smallest travel‐time residuals. We refine seismic locations using a least‐squares location method (VELEST) and a high‐precision relative location method (hypoDD). REAL can be used for rapid seismic characterization due to its computational efficiency. As an example application, we apply REAL to earthquakes in the 2016 central Apennines, Italy, earthquake sequence occurring during a five‐day period in October 2016, midway in time between the two largest earthquakes. We associate and locate more than three times as many events (3341) as are in Italy's National Institute of Geophysics and Volcanology routine catalog (862). The spatial distribution of these relocated earthquakes shows a similar but more concentrated pattern relative to the cataloged events. Our study demonstrates that it is possible to characterize seismicity automatically and quickly using REAL and seismic picks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊完成签到,获得积分10
刚刚
刚刚
圆又圆完成签到,获得积分10
刚刚
刚刚
wanci应助孙洪琼采纳,获得10
刚刚
坚强飞兰完成签到 ,获得积分10
刚刚
kkyy发布了新的文献求助10
1秒前
传奇3应助不想长大采纳,获得10
1秒前
James完成签到,获得积分10
1秒前
辉辉发布了新的文献求助10
1秒前
ROYXIONG完成签到 ,获得积分10
2秒前
白枫完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
嗡嗡嗡应助+1采纳,获得30
4秒前
简啦啦发布了新的文献求助10
5秒前
hhhhliii发布了新的文献求助10
5秒前
5秒前
领导范儿应助飞0802采纳,获得10
5秒前
6秒前
自由的山柏完成签到,获得积分10
7秒前
梦之发布了新的文献求助10
7秒前
7秒前
兰兰睡着了完成签到,获得积分10
8秒前
9秒前
半两月光完成签到,获得积分20
9秒前
Natural发布了新的文献求助10
9秒前
科研通AI6应助巴旦木采纳,获得10
9秒前
Owen应助小77采纳,获得10
10秒前
小雒雒发布了新的文献求助10
10秒前
黑马王子发布了新的文献求助10
11秒前
czx关闭了czx文献求助
11秒前
量子星尘发布了新的文献求助10
12秒前
彭于彦祖应助aaaa采纳,获得50
13秒前
玛卡巴卡发布了新的文献求助10
14秒前
14秒前
可爱安莲完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244