人工蜂群算法
运动规划
计算机科学
水准点(测量)
趋同(经济学)
路径(计算)
人口
进化算法
进化计算
人工智能
极限(数学)
数学优化
机器人
集合(抽象数据类型)
计算
维数(图论)
蜜蜂算法
算法
元启发式
数学
数学分析
人口学
大地测量学
社会学
经济增长
经济
程序设计语言
地理
纯数学
作者
Feiyi Xu,Haolun Li,Chi‐Man Pun,Haidong Hu,Yujie Li,Yurong Song,Hao Gao
标识
DOI:10.1016/j.asoc.2019.106037
摘要
Abstract Artificial bee colony has received much attention in recent years as a competitive population-based optimization algorithm. However, its slow convergence speed and one-dimensional search strategy limit it from demonstrating advantage in separable functions. To address these concerning issues, this paper introduces a coevolution framework into ABC and designs a global best leading artificial bee colony algorithm with an improved strategy to accelerate its convergence and conquer the dependency of dimension separately. A set of classical and Congress on Evolutionary Computation 2015 benchmark functions are adopted for validating the efficiency of our algorithm. In addition, in order to show the practicality of our algorithm, a robot path-planning problem is tested, and our algorithm still achieves superior results.
科研通智能强力驱动
Strongly Powered by AbleSci AI