Exercise Fatigue Detection Algorithm Based on Video Image Information Extraction

Softmax函数 计算机科学 特征选择 支持向量机 人工智能 特征提取 特征(语言学) 模式识别(心理学) 算法 人工神经网络 语言学 哲学
作者
Fan Zhang,Feng Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 199696-199709 被引量:22
标识
DOI:10.1109/access.2020.3023648
摘要

Excessive psychological pressure, long working hours, and excessive labor intensity can make people exhausted and affect people's cognition and motor function. Detecting the fatigue state of athletes can prevent excessive fatigue and sports injuries. This article chooses the adaptive median filter method to smooth the image and remove the noise, and uses the adaptive threshold light equalization method to adjust the image's light equalization. According to the admission and rejection criteria of the Sequential Forward Floating Selection (SFFS) algorithm, different feature parameter combinations are used to build a fatigue motion detection model based on Support Vector Machine (SVM). Taking the classification performance of the built SVM detection model as the evaluation criterion, and using the sequence floating forward selection algorithm as the search strategy, the fatigue characteristic parameter optimization selection algorithm is established. The algorithm is used to reduce the dimensionality of the full set of fatigue feature parameters, and the optimal feature subset of fatigue motion is extracted. Based on the paired sample t-test and the analysis of variance method, it analyzes and quantifies the comprehensive influence of individual athlete differences and fatigue exercise on sports behavior and eye movement characteristics. An adaptive detection model is built based on personality parameters, and the design idea of the fatigue feature extraction network is analyzed. In order to make full use of the information of the feature vector output by the fully connected layer, the new network designs two fully connected layers to extract feature vectors. Two types are output by the Softmax loss function, which can directly determine whether the athlete is in a fatigue state. Based on the PERCLOS (Percentage of Eyelid Closure Over the Pupil over time) criterion, this article completes the construction of the fatigue motion sample set, and classifies the face images with more than 80% eyes closed as fatigue samples. This method can apply the PERCLOS criterion to the training of the convolutional neural network, so that it can recognize the fatigue state of the face based on the comprehensive facial features and improve the robustness of the algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
楼迎荷发布了新的文献求助10
2秒前
JamesPei应助受伤书文采纳,获得10
2秒前
tky完成签到,获得积分10
2秒前
tramp发布了新的文献求助10
2秒前
朴素海亦发布了新的文献求助10
4秒前
王大壮完成签到,获得积分10
4秒前
无花果应助刻苦手套采纳,获得20
4秒前
5秒前
5秒前
6秒前
天真大神发布了新的文献求助10
6秒前
付滋滋完成签到 ,获得积分10
6秒前
in完成签到,获得积分0
6秒前
7秒前
xin应助干净的芮采纳,获得20
7秒前
小二郎应助李李李李李采纳,获得10
8秒前
英俊的铭应助Richardisme采纳,获得10
8秒前
素养哥完成签到,获得积分10
9秒前
西安浴日光能赵炜完成签到,获得积分10
9秒前
充电宝应助终不似采纳,获得10
9秒前
aa1212121发布了新的文献求助10
10秒前
10秒前
qigis完成签到,获得积分20
10秒前
11秒前
雪白的威发布了新的文献求助10
12秒前
12秒前
Orange应助Xuan采纳,获得10
12秒前
12秒前
20050437完成签到,获得积分10
13秒前
13秒前
苹果花发布了新的文献求助10
15秒前
lg发布了新的文献求助10
17秒前
Leif应助安静河马采纳,获得20
18秒前
科研通AI5应助tramp采纳,获得10
18秒前
qigis关注了科研通微信公众号
18秒前
19秒前
Decade2021完成签到,获得积分20
19秒前
科研通AI5应助谦让沛儿采纳,获得10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797