Online Anomaly Detection Leveraging Stream-Based Clustering and Real-Time Telemetry

计算机科学 异常检测 聚类分析 试验台 数据挖掘 遥测 僵尸网络 实时计算 故障排除 离群值 数据库扫描 人工智能 模糊聚类 计算机网络 互联网 电信 树冠聚类算法 操作系统 万维网
作者
Andrian Putina,Dario Rossi
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:18 (1): 839-854 被引量:23
标识
DOI:10.1109/tnsm.2020.3037019
摘要

Recent technology evolution allows network equipment to continuously stream a wealth of "telemetry" information, which pertains to multiple protocols and layers of the stack, at a very fine spatial-grain and high-frequency. This deluge of telemetry data clearly offers new opportunities for network control and troubleshooting, but also poses a serious challenge for what concerns its real-time processing. We tackle this challenge by applying streaming machine-learning techniques to the continuous flow of control and data-plane telemetry data, with the purpose of real-time detection of anomalies. In particular, we implement an anomaly detection engine that leverages DenStream, an unsupervised clustering technique, and apply it to features collected from a large-scale testbed comprising tens of routers traversed up to 3Terabit/s worth of real application traffic. We contrast DenStream with offline algorithms such as DBScan and Local Outlier Factor (LOF), as well as online algorithms such as the windowed version of DBScan, ExactSTORM, Continuous Outlier Detection (COD) and Robust Random Cut Forest (RRCF). Our experimental campaign compares these seven algorithms under both accuracy and computational complexity viewpoints: results testify that DenStream (i) achieves detection results on par with RRCF, the best performing algorithm and (ii) is significantly faster than other approaches, notably over two orders of magnitude faster than RRCF. In spirit with the recent trend toward reproducibility of results, we make our code available as open source to the scientific community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助王强采纳,获得10
刚刚
阳光的虔纹完成签到 ,获得积分10
刚刚
小二郎应助大皮猪采纳,获得10
2秒前
2秒前
赘婿应助会鹅鹅鹅的鹅采纳,获得10
3秒前
zimu012完成签到,获得积分10
3秒前
ddd完成签到,获得积分10
4秒前
ttt完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助Ywffffff采纳,获得10
5秒前
5秒前
无极微光应助佳jia采纳,获得20
5秒前
6秒前
酷波er应助Repro采纳,获得10
6秒前
礼已临完成签到,获得积分10
6秒前
hence发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助Zwang采纳,获得50
7秒前
丰富的冰棍完成签到 ,获得积分10
7秒前
JamesPei应助Lv采纳,获得10
7秒前
zgrmws给酒温书生的求助进行了留言
8秒前
Lllll发布了新的文献求助10
8秒前
山野下应助隐形昊强采纳,获得10
8秒前
妙妙妙完成签到,获得积分10
8秒前
9秒前
9秒前
倩Q发布了新的文献求助10
10秒前
我爱刘惜君完成签到,获得积分10
11秒前
11秒前
情怀应助聪慧的正豪采纳,获得10
11秒前
冷傲的晓山完成签到,获得积分10
12秒前
CCC完成签到,获得积分10
12秒前
12秒前
淑儿哥哥完成签到,获得积分10
13秒前
13秒前
科目三应助ZZZZZ采纳,获得10
14秒前
djdj完成签到,获得积分20
14秒前
Mlwwq完成签到,获得积分10
15秒前
15秒前
朝阳发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441