Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting

光伏系统 人工神经网络 可再生能源 计算机科学 网格 人工智能 时间范围 工业工程 工程类 集合预报 数学优化 数学 电气工程 几何学
作者
Max Olinto Moreira,Pedro Paulo Balestrassi,Anderson Paulo de Paiva,Paulo F. Ribeiro,Benedito Donizeti Bonatto
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:135: 110450-110450 被引量:75
标识
DOI:10.1016/j.rser.2020.110450
摘要

In recent years, renewable and sustainable energy sources have attracted the attention of various investors and stakeholders, such as energy sector agents and even consumers. It is perplexing to observe and anticipate the required levels of photovoltaic generation, which are inherent tasks for such rapid insertion into the electric grid. This distributed/renewable generation must be integrated in a coordinated way such that there is no negative impact on the electric performance of the grid, increasing in the complexity of energy management. In this article, a methodology for photovoltaic generation forecasting is addressed for a horizon of one week ahead, using a new approach based on an artificial neural network (ANN) ensemble. Two main questions will be explored with this approach: how to select the ANNs, and how to combine them in the ensemble. The design of experiments (DOE) approach is applied to the photovoltaic time series factors and ANN factors. Then, a cluster analysis is performed to select the best networks. From this point on, a mixture (MDE) is employed to determine the ideal weights for the ensemble formation. The methodology is detailed throughout the paper and, based on the combination of forecasts, the photovoltaic generation was estimated for a specific panel set located in the state of Minas Gerais, Brazil, reaching the value of 4.7% for the weekly mean absolute percentage error. The versatility of the proposed method allowed the change of the number of factors to be used in the experimental arrangement, the forecast model, and the desired forecast horizon, and consequently enhancing the forecasting determination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰色的乌完成签到,获得积分10
刚刚
侯侯完成签到,获得积分10
刚刚
sakatagintoki完成签到,获得积分10
2秒前
4秒前
领导范儿应助wzs采纳,获得10
5秒前
7秒前
科研通AI5应助神勇长颈鹿采纳,获得10
7秒前
研友_nVWP2Z完成签到 ,获得积分0
8秒前
9秒前
科研狗完成签到 ,获得积分20
9秒前
10秒前
10秒前
科研通AI6应助Zxc采纳,获得10
10秒前
11秒前
田様应助孔凡悦采纳,获得10
11秒前
12秒前
12秒前
12秒前
cometx完成签到 ,获得积分10
13秒前
135发布了新的文献求助10
13秒前
13秒前
椰椰鲨发布了新的文献求助30
14秒前
张凤发布了新的文献求助10
15秒前
15秒前
ZYZ完成签到,获得积分10
15秒前
yxf完成签到,获得积分10
15秒前
16秒前
谦让R发布了新的文献求助10
16秒前
万能图书馆应助z69823采纳,获得30
18秒前
Time发布了新的文献求助10
18秒前
善学以致用应助李春丽采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
浮游应助傲娇的觅翠采纳,获得10
21秒前
ymr发布了新的文献求助10
22秒前
孔凡悦发布了新的文献求助10
24秒前
24秒前
谦让R完成签到,获得积分10
25秒前
大模型应助Lven采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979618
求助须知:如何正确求助?哪些是违规求助? 4232294
关于积分的说明 13182934
捐赠科研通 4023273
什么是DOI,文献DOI怎么找? 2201279
邀请新用户注册赠送积分活动 1213717
关于科研通互助平台的介绍 1129916