Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting

光伏系统 人工神经网络 可再生能源 计算机科学 网格 人工智能 时间范围 工业工程 工程类 集合预报 数学优化 数学 电气工程 几何学
作者
Max Olinto Moreira,Pedro Paulo Balestrassi,Anderson Paulo de Paiva,Paulo F. Ribeiro,Benedito Donizeti Bonatto
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:135: 110450-110450 被引量:75
标识
DOI:10.1016/j.rser.2020.110450
摘要

In recent years, renewable and sustainable energy sources have attracted the attention of various investors and stakeholders, such as energy sector agents and even consumers. It is perplexing to observe and anticipate the required levels of photovoltaic generation, which are inherent tasks for such rapid insertion into the electric grid. This distributed/renewable generation must be integrated in a coordinated way such that there is no negative impact on the electric performance of the grid, increasing in the complexity of energy management. In this article, a methodology for photovoltaic generation forecasting is addressed for a horizon of one week ahead, using a new approach based on an artificial neural network (ANN) ensemble. Two main questions will be explored with this approach: how to select the ANNs, and how to combine them in the ensemble. The design of experiments (DOE) approach is applied to the photovoltaic time series factors and ANN factors. Then, a cluster analysis is performed to select the best networks. From this point on, a mixture (MDE) is employed to determine the ideal weights for the ensemble formation. The methodology is detailed throughout the paper and, based on the combination of forecasts, the photovoltaic generation was estimated for a specific panel set located in the state of Minas Gerais, Brazil, reaching the value of 4.7% for the weekly mean absolute percentage error. The versatility of the proposed method allowed the change of the number of factors to be used in the experimental arrangement, the forecast model, and the desired forecast horizon, and consequently enhancing the forecasting determination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Zzzoey完成签到,获得积分10
2秒前
2秒前
2秒前
英姑应助桂魄采纳,获得10
2秒前
2秒前
流北爷发布了新的文献求助10
3秒前
开心完成签到,获得积分10
3秒前
gguc发布了新的文献求助10
4秒前
万能图书馆应助okghy采纳,获得10
4秒前
4秒前
怕黑道消完成签到 ,获得积分10
4秒前
王小布完成签到,获得积分10
5秒前
石头发布了新的文献求助10
5秒前
楼下小白龙完成签到,获得积分10
5秒前
润润轩轩发布了新的文献求助10
5秒前
5秒前
Echo完成签到,获得积分10
6秒前
zmmmm发布了新的文献求助10
7秒前
雪山飞龙发布了新的文献求助30
7秒前
7秒前
Jenny应助小土豆采纳,获得50
7秒前
情怀应助布鲁鲁采纳,获得10
7秒前
7秒前
悦耳寒松发布了新的文献求助10
8秒前
8秒前
霍嘉文完成签到,获得积分10
8秒前
9秒前
bluesiryao发布了新的文献求助10
9秒前
李爱国应助23采纳,获得10
10秒前
10秒前
SHJ发布了新的文献求助10
10秒前
开心的幻柏完成签到 ,获得积分10
10秒前
大神完成签到 ,获得积分20
10秒前
10秒前
11秒前
11秒前
闪闪的YOSH完成签到,获得积分10
11秒前
Jimmy完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794