Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting

光伏系统 人工神经网络 可再生能源 计算机科学 网格 人工智能 时间范围 工业工程 工程类 集合预报 数学优化 数学 电气工程 几何学
作者
Max Olinto Moreira,Pedro Paulo Balestrassi,Anderson Paulo de Paiva,Paulo F. Ribeiro,Benedito Donizeti Bonatto
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:135: 110450-110450 被引量:75
标识
DOI:10.1016/j.rser.2020.110450
摘要

In recent years, renewable and sustainable energy sources have attracted the attention of various investors and stakeholders, such as energy sector agents and even consumers. It is perplexing to observe and anticipate the required levels of photovoltaic generation, which are inherent tasks for such rapid insertion into the electric grid. This distributed/renewable generation must be integrated in a coordinated way such that there is no negative impact on the electric performance of the grid, increasing in the complexity of energy management. In this article, a methodology for photovoltaic generation forecasting is addressed for a horizon of one week ahead, using a new approach based on an artificial neural network (ANN) ensemble. Two main questions will be explored with this approach: how to select the ANNs, and how to combine them in the ensemble. The design of experiments (DOE) approach is applied to the photovoltaic time series factors and ANN factors. Then, a cluster analysis is performed to select the best networks. From this point on, a mixture (MDE) is employed to determine the ideal weights for the ensemble formation. The methodology is detailed throughout the paper and, based on the combination of forecasts, the photovoltaic generation was estimated for a specific panel set located in the state of Minas Gerais, Brazil, reaching the value of 4.7% for the weekly mean absolute percentage error. The versatility of the proposed method allowed the change of the number of factors to be used in the experimental arrangement, the forecast model, and the desired forecast horizon, and consequently enhancing the forecasting determination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bismarck完成签到,获得积分10
3秒前
basil完成签到,获得积分10
4秒前
nkr完成签到,获得积分10
5秒前
叶子完成签到 ,获得积分10
5秒前
小张完成签到 ,获得积分10
7秒前
13秒前
胖胖完成签到 ,获得积分0
14秒前
量子星尘发布了新的文献求助10
15秒前
烈阳初现发布了新的文献求助10
17秒前
尔信完成签到 ,获得积分10
17秒前
LXZ完成签到,获得积分10
18秒前
黄启烽完成签到,获得积分10
18秒前
瓦罐完成签到 ,获得积分10
21秒前
Perrylin718完成签到,获得积分10
22秒前
笨笨青筠完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
Bioflying完成签到,获得积分10
27秒前
阿达完成签到 ,获得积分10
27秒前
urologywang完成签到 ,获得积分10
28秒前
好好应助科研通管家采纳,获得10
31秒前
好好应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
卑微学术人完成签到 ,获得积分10
33秒前
34秒前
111111完成签到,获得积分10
35秒前
烈阳初现完成签到,获得积分10
35秒前
笑林完成签到 ,获得积分10
35秒前
谨慎的凝丝完成签到,获得积分10
37秒前
岩松完成签到 ,获得积分10
39秒前
布吉布完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
淡淡醉波wuliao完成签到 ,获得积分10
41秒前
Much完成签到 ,获得积分10
43秒前
吃颗电池完成签到 ,获得积分10
46秒前
王懒懒完成签到 ,获得积分10
47秒前
三伏天发布了新的文献求助10
49秒前
负责的紫安完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839