Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting

光伏系统 人工神经网络 可再生能源 计算机科学 网格 人工智能 时间范围 工业工程 工程类 集合预报 数学优化 数学 电气工程 几何学
作者
Max Olinto Moreira,Pedro Paulo Balestrassi,Anderson Paulo de Paiva,Paulo F. Ribeiro,Benedito Donizeti Bonatto
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:135: 110450-110450 被引量:75
标识
DOI:10.1016/j.rser.2020.110450
摘要

In recent years, renewable and sustainable energy sources have attracted the attention of various investors and stakeholders, such as energy sector agents and even consumers. It is perplexing to observe and anticipate the required levels of photovoltaic generation, which are inherent tasks for such rapid insertion into the electric grid. This distributed/renewable generation must be integrated in a coordinated way such that there is no negative impact on the electric performance of the grid, increasing in the complexity of energy management. In this article, a methodology for photovoltaic generation forecasting is addressed for a horizon of one week ahead, using a new approach based on an artificial neural network (ANN) ensemble. Two main questions will be explored with this approach: how to select the ANNs, and how to combine them in the ensemble. The design of experiments (DOE) approach is applied to the photovoltaic time series factors and ANN factors. Then, a cluster analysis is performed to select the best networks. From this point on, a mixture (MDE) is employed to determine the ideal weights for the ensemble formation. The methodology is detailed throughout the paper and, based on the combination of forecasts, the photovoltaic generation was estimated for a specific panel set located in the state of Minas Gerais, Brazil, reaching the value of 4.7% for the weekly mean absolute percentage error. The versatility of the proposed method allowed the change of the number of factors to be used in the experimental arrangement, the forecast model, and the desired forecast horizon, and consequently enhancing the forecasting determination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
conanking完成签到 ,获得积分10
1秒前
zhangyu应助LWJ采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
Yimmy发布了新的文献求助10
5秒前
5秒前
拍脑门搞科研完成签到,获得积分10
5秒前
6秒前
7秒前
李滢童发布了新的文献求助10
7秒前
hubanj完成签到,获得积分10
9秒前
小马甲应助jin采纳,获得10
10秒前
小王发布了新的文献求助20
10秒前
乐乐应助醉熏的鑫采纳,获得10
11秒前
无限道罡发布了新的文献求助10
12秒前
Yimmy完成签到,获得积分10
12秒前
哈哈镜阿姐完成签到,获得积分10
13秒前
14秒前
小马甲应助李滢童采纳,获得10
15秒前
香蕉觅云应助泡泡糖采纳,获得10
17秒前
充电宝应助王青青采纳,获得10
17秒前
tcf应助无限道罡采纳,获得20
18秒前
garlic完成签到,获得积分10
19秒前
彭于晏应助沉默的觅海采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
19秒前
hzc应助科研通管家采纳,获得10
20秒前
LaTeXer应助科研通管家采纳,获得100
20秒前
博弈春秋应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
核桃应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629