二硒醚
前药
多西紫杉醇
化学
细胞毒性
组合化学
医学
有机化学
生物化学
化疗
体外
外科
硒
作者
Shiyi Zuo,Bingjun Sun,Yinxian Yang,Shuang Zhou,Yu Zhang,Mengran Guo,Mengchi Sun,Cong Luo,Zhonggui He,Jin Sun
出处
期刊:Small
[Wiley]
日期:2020-10-20
卷期号:16 (45)
被引量:78
标识
DOI:10.1002/smll.202005039
摘要
Abstract The current state of chemotherapy is far from satisfaction, restricted by the inefficient drug delivery and the off‐target toxicity. Prodrug nanoassemblies are emerging as efficient platforms for chemotherapy. Herein, three docetaxel dimeric prodrugs are designed using diselenide bond, disulfide bond, or dicarbide bond as linkages. Interestingly, diselenide bond‐bridged dimeric prodrug can self‐assemble into stable nanoparticles with impressive high drug loading (≈70%, w/w). Compared with disulfide bond and dicarbide bond, diselenide bond greatly facilitates the self‐assembly of dimeric prodrug, and then improves the colloidal stability, blood circulation time, and antitumor efficacy of prodrug nanoassemblies. Furthermore, the redox‐sensitive diselenide bond can specifically respond to the overexpressed reactive oxygen species and glutathione in tumor cells, leading to tumor‐specific drug release. Therefore, diselenide bond bridged prodrug nanoassemblies exhibit discriminating cytotoxicity between tumor cells and normal cells, significantly alleviating the systemic toxicity of docetaxel. The present work gains in‐depth insight into the impact of diselenide bond on the dimeric prodrug nanoassemblies, and provides promising strategies for the rational design of the high efficiency–low toxicity chemotherapeutical nanomedicines.
科研通智能强力驱动
Strongly Powered by AbleSci AI