Deep Learning–Based Detection of Early Renal Function Impairment Using Retinal Fundus Images: Model Development and Validation

眼底(子宫) 肾功能 医学 接收机工作特性 视网膜 曲线下面积 深度学习 眼科 糖尿病性视网膜病变 人工智能 内科学 糖尿病 计算机科学 内分泌学
作者
Eugene Yu‐Chuan Kang,Yi‐Ting Hsieh,Chien-Hung Li,Yijin Huang,Chang‐Fu Kuo,Je‐Ho Kang,Kuan‐Jen Chen,Chi‐Chun Lai,Wei‐Chi Wu,Yih‐Shiou Hwang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (11): e23472-e23472 被引量:29
标识
DOI:10.2196/23472
摘要

Retinal imaging has been applied for detecting eye diseases and cardiovascular risks using deep learning-based methods. Furthermore, retinal microvascular and structural changes were found in renal function impairments. However, a deep learning-based method using retinal images for detecting early renal function impairment has not yet been well studied.This study aimed to develop and evaluate a deep learning model for detecting early renal function impairment using retinal fundus images.This retrospective study enrolled patients who underwent renal function tests with color fundus images captured at any time between January 1, 2001, and August 31, 2019. A deep learning model was constructed to detect impaired renal function from the images. Early renal function impairment was defined as estimated glomerular filtration rate <90 mL/min/1.73 m2. Model performance was evaluated with respect to the receiver operating characteristic curve and area under the curve (AUC).In total, 25,706 retinal fundus images were obtained from 6212 patients for the study period. The images were divided at an 8:1:1 ratio. The training, validation, and testing data sets respectively contained 20,787, 2189, and 2730 images from 4970, 621, and 621 patients. There were 10,686 and 15,020 images determined to indicate normal and impaired renal function, respectively. The AUC of the model was 0.81 in the overall population. In subgroups stratified by serum hemoglobin A1c (HbA1c) level, the AUCs were 0.81, 0.84, 0.85, and 0.87 for the HbA1c levels of ≤6.5%, >6.5%, >7.5%, and >10%, respectively.The deep learning model in this study enables the detection of early renal function impairment using retinal fundus images. The model was more accurate for patients with elevated serum HbA1c levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到,获得积分10
1秒前
阳炎完成签到,获得积分10
5秒前
山野桃饼完成签到,获得积分10
5秒前
joanna完成签到 ,获得积分10
5秒前
沉默的书本完成签到,获得积分10
7秒前
Yh完成签到 ,获得积分10
9秒前
joanna关注了科研通微信公众号
9秒前
13秒前
wnll完成签到,获得积分10
13秒前
14秒前
Ray完成签到,获得积分10
15秒前
夏之完成签到,获得积分10
15秒前
wnll发布了新的文献求助10
18秒前
木光发布了新的文献求助10
18秒前
19秒前
恩拜尔生物完成签到,获得积分10
19秒前
Town完成签到,获得积分10
19秒前
酷波er应助和谐小霸王采纳,获得10
19秒前
glory_c完成签到,获得积分10
20秒前
天天快乐应助小杨采纳,获得10
20秒前
21秒前
雪上一枝蒿完成签到,获得积分10
21秒前
fufu完成签到 ,获得积分10
22秒前
chawenxian2025完成签到,获得积分10
23秒前
23秒前
惜寒完成签到 ,获得积分10
24秒前
雪白的绯完成签到 ,获得积分10
24秒前
魔幻蓉发布了新的文献求助10
25秒前
25秒前
lpjianai168完成签到,获得积分10
26秒前
和和完成签到,获得积分10
26秒前
GX2023完成签到,获得积分10
28秒前
科研螺丝完成签到 ,获得积分10
28秒前
29秒前
29秒前
张张张xxx完成签到,获得积分10
30秒前
GX2023发布了新的文献求助10
30秒前
甜甜醉波完成签到,获得积分10
32秒前
oceanao应助清秀的妙菡采纳,获得10
32秒前
时势造英雄完成签到 ,获得积分10
34秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167258
求助须知:如何正确求助?哪些是违规求助? 2818739
关于积分的说明 7922136
捐赠科研通 2478513
什么是DOI,文献DOI怎么找? 1320375
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443