Deep Learning–Based Detection of Early Renal Function Impairment Using Retinal Fundus Images: Model Development and Validation

眼底(子宫) 肾功能 医学 接收机工作特性 视网膜 曲线下面积 深度学习 眼科 糖尿病性视网膜病变 人工智能 内科学 糖尿病 计算机科学 内分泌学
作者
Eugene Yu‐Chuan Kang,Yi‐Ting Hsieh,Chien-Hung Li,Yijin Huang,Chang‐Fu Kuo,Je‐Ho Kang,Kuan‐Jen Chen,Chi‐Chun Lai,Wei‐Chi Wu,Yih‐Shiou Hwang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (11): e23472-e23472 被引量:29
标识
DOI:10.2196/23472
摘要

Retinal imaging has been applied for detecting eye diseases and cardiovascular risks using deep learning-based methods. Furthermore, retinal microvascular and structural changes were found in renal function impairments. However, a deep learning-based method using retinal images for detecting early renal function impairment has not yet been well studied.This study aimed to develop and evaluate a deep learning model for detecting early renal function impairment using retinal fundus images.This retrospective study enrolled patients who underwent renal function tests with color fundus images captured at any time between January 1, 2001, and August 31, 2019. A deep learning model was constructed to detect impaired renal function from the images. Early renal function impairment was defined as estimated glomerular filtration rate <90 mL/min/1.73 m2. Model performance was evaluated with respect to the receiver operating characteristic curve and area under the curve (AUC).In total, 25,706 retinal fundus images were obtained from 6212 patients for the study period. The images were divided at an 8:1:1 ratio. The training, validation, and testing data sets respectively contained 20,787, 2189, and 2730 images from 4970, 621, and 621 patients. There were 10,686 and 15,020 images determined to indicate normal and impaired renal function, respectively. The AUC of the model was 0.81 in the overall population. In subgroups stratified by serum hemoglobin A1c (HbA1c) level, the AUCs were 0.81, 0.84, 0.85, and 0.87 for the HbA1c levels of ≤6.5%, >6.5%, >7.5%, and >10%, respectively.The deep learning model in this study enables the detection of early renal function impairment using retinal fundus images. The model was more accurate for patients with elevated serum HbA1c levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美修杰发布了新的文献求助10
刚刚
刚刚
刚刚
谢昊宸完成签到,获得积分10
1秒前
better完成签到,获得积分10
1秒前
JY关注了科研通微信公众号
1秒前
2秒前
3秒前
Zhen发布了新的文献求助10
4秒前
Ronin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
小管发布了新的文献求助10
5秒前
赘婿应助研友_LOK59L采纳,获得10
6秒前
发发发发布了新的文献求助10
6秒前
6秒前
playpp完成签到,获得积分10
7秒前
7秒前
汉堡包应助rodney2023采纳,获得10
7秒前
舒适涵山发布了新的文献求助10
8秒前
sxb10101给xuaotian的求助进行了留言
8秒前
冷酷尔琴发布了新的文献求助10
8秒前
耳朵追追发布了新的文献求助10
8秒前
9秒前
ding完成签到 ,获得积分10
9秒前
better发布了新的文献求助10
9秒前
小马同学发布了新的文献求助10
10秒前
10秒前
张jiu发布了新的文献求助10
11秒前
13秒前
hadron发布了新的文献求助10
13秒前
14秒前
14秒前
废寝忘食发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
顾矜应助冷酷尔琴采纳,获得10
15秒前
单薄海莲完成签到 ,获得积分10
15秒前
ke完成签到 ,获得积分10
16秒前
发发发完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680372
求助须知:如何正确求助?哪些是违规求助? 4998418
关于积分的说明 15172742
捐赠科研通 4840279
什么是DOI,文献DOI怎么找? 2593943
邀请新用户注册赠送积分活动 1546924
关于科研通互助平台的介绍 1504958