运行x2
成骨细胞
微泡
小RNA
骨质疏松症
间充质干细胞
外体
癌症研究
骨髓
细胞生物学
化学
生物
医学
内科学
体外
生物化学
基因
作者
Min Qiu,Shuheng Zhai,Qin Fu,Da Liu
出处
期刊:Human Gene Therapy
[Mary Ann Liebert]
日期:2020-10-27
卷期号:32 (13-14): 717-729
被引量:80
摘要
At present, much more studies have focused on the role of microRNAs in osteoporosis, but the more specific role of microRNA-150-3p (miR-150-3p) in osteoporosis still needs full exploration. We aim at investigating the role of miR-150-3p in osteoporosis and at exploring the related mechanisms. Bone marrow mesenchymal stem cells (BMSCs) were cultured, from which exosomes were isolated. Osteoporosis models were established by ovariectomy and injected with transfected BMSCs exosomes. Bone formation markers in serum, histopathological changes and miR-150-3p, runt-related transcription factor 2 (Runx2) and Osterix expression, and osteoblast apoptosis in femoral tissues were detected. Osteoblasts were isolated and co-cultured with the transfected BMSCs-derived exosomes. Osteoblast proliferation, cell differentiation, and apoptosis, along with miR-150-3p, Runx2, and Osterix expression in osteoblasts were detected. In vivo experiment demonstrated that miR-150-3p, Runx2, and Osterix expression was decreased whereas bone formation markers were decreased in osteoporosis. BMSCs exosomes attenuated osteoporosis, which was further improved by upregulated miR-150-3p in exosomes whereas it was impaired by downregulated miR-150-3p in exosomes. In vitro experiments declared decreased miR-150-3p, Runx2, and Osterix expression; suppressed proliferation; and encouraged apoptosis in osteoblasts in osteoporosis. BMSCs exosomes promoted osteoblast proliferation and differentiation and inhibited apoptosis, which was strengthened by raised exosomal miR-150-3p whereas it was disrupted by inhibited exosomal miR-150-3p. Our study elucidates that exosomal miR-150-3p promotes osteoblast proliferation and differentiation in osteoporosis and provides a new clue for the treatment of patients with osteoporosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI