Identification of blood protein biomarkers for breast cancer staging by integrative transcriptome and proteome analyses

转录组 蛋白质组 乳腺癌 恶性肿瘤 生物标志物发现 计算生物学 医学 生物标志物 蛋白质组学 癌症生物标志物 癌症 生物 生物信息学 肿瘤科 基因 基因表达 遗传学
作者
Fang Yao,Yan Chen,Yan Zhang,Liming Shen,Dongxian Zhou,Jiazuan Ni
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:230: 103991-103991 被引量:23
标识
DOI:10.1016/j.jprot.2020.103991
摘要

Breast cancer is the most common malignancy for women. Accurate prediction of breast cancer and its pathological stages is important for treatment decision-making. Although many studies have focused on discovering circulating biomarkers of breast cancer, no such biomarkers have been reported for different stages of this disease. In this study, we identified blood protein biomarkers for each stage of breast cancer by analyzing transcriptome and proteome data from patients. Analysis of the TCGA transcriptome datasets revealed that a large number of genes were differentially expressed in tumor samples of each stage of breast cancer compared with adjacent normal tissues. Blood-secretory proteins encoded by these genes were then predicted by bioinformatics programs. Furthermore, iTRAQ-based proteomic analysis was conducted for plasma samples of breast cancer patients with different stages. A portion of predicted blood-secretory proteins could be detected and verified differentially expressed. Finally, several proteins were chosen as potential blood protein biomarkers for different stages of breast cancer due to their consistent expression patterns at both mRNA and protein levels. Overall, our data provide new insights into diagnosis and classification of breast cancer as well as selection of optimal treatments. We identified blood protein biomarkers for each stage of breast cancer by analyzing tissue-based transcriptome and blood-based proteome data from patients. To our knowledge, this is the first time to try to identify blood protein biomarkers for different stages of breast cancer via these integrative analyses. Our data may provide new insights into diagnosis and classification of breast cancer as well as selection of optimal treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人间无事人完成签到,获得积分10
1秒前
搜集达人应助yan采纳,获得10
2秒前
如意翡翠发布了新的文献求助10
2秒前
3秒前
3秒前
搜集达人应助MM采纳,获得10
4秒前
山复尔尔应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
Mr.Young完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
zhijianzhe应助科研通管家采纳,获得50
6秒前
脑洞疼应助科研通管家采纳,获得30
6秒前
pcr163应助科研通管家采纳,获得200
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得20
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得10
7秒前
dypdyp应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
山复尔尔应助科研通管家采纳,获得10
7秒前
我心匪石不可转完成签到,获得积分10
7秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助竹筏过海采纳,获得100
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966615
求助须知:如何正确求助?哪些是违规求助? 3512055
关于积分的说明 11161483
捐赠科研通 3246880
什么是DOI,文献DOI怎么找? 1793552
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420