A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images

变更检测 深度学习 人工智能 计算机视觉 遥感 计算机科学 卷积神经网络 分割 特征(语言学) 模式识别(心理学) 特征提取 地理 语言学 哲学
作者
Chenxiao Zhang,Peng Yue,Deodato Tapete,Liangcun Jiang,Boyi Shangguan,Li Huang,Guangchao Liu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:166: 183-200 被引量:582
标识
DOI:10.1016/j.isprsjprs.2020.06.003
摘要

Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are not suitable for the task considering the challenges brought by the fine image details and complex texture features conveyed in high resolution images, a number of deep learning-based change detection methods have been proposed to improve the change detection performance. Although the state-of-the-art deep feature based methods outperform all the other deep learning-based change detection methods, networks in the existing deep feature based methods are mostly modified from architectures that are originally proposed for single-image semantic segmentation. Transferring these networks for change detection task still poses some key issues. In this paper, we propose a deeply supervised image fusion network (IFN) for change detection in high resolution bi-temporal remote sensing images. Specifically, highly representative deep features of bi-temporal images are firstly extracted through a fully convolutional two-stream architecture. Then, the extracted deep features are fed into a deeply supervised difference discrimination network (DDN) for change detection. To improve boundary completeness and internal compactness of objects in the output change maps, multi-level deep features of raw images are fused with image difference features by means of attention modules for change map reconstruction. DDN is further enhanced by directly introducing change map losses to intermediate layers in the network, and the whole network is trained in an end-to-end manner. IFN is applied to a publicly available dataset, as well as a challenging dataset consisting of multi-source bi-temporal images from Google Earth covering different cities in China. Both visual interpretation and quantitative assessment confirm that IFN outperforms four benchmark methods derived from the literature, by returning changed areas with complete boundaries and high internal compactness compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds发布了新的文献求助10
1秒前
白菜也挺贵完成签到,获得积分10
1秒前
2秒前
2秒前
qiao发布了新的文献求助10
2秒前
我是老大应助淡写采纳,获得10
2秒前
无花果应助Rason采纳,获得10
2秒前
2秒前
11完成签到,获得积分10
3秒前
5秒前
小蘑菇应助弗一昂采纳,获得10
5秒前
nkmenghan完成签到,获得积分10
5秒前
6秒前
名字真的难取完成签到,获得积分10
6秒前
几酌应助傅三毒采纳,获得20
7秒前
7秒前
7秒前
牛牛要当院士喽完成签到,获得积分10
8秒前
9秒前
天真的万声完成签到,获得积分10
9秒前
9秒前
卷心菜发布了新的文献求助10
10秒前
洛洛完成签到,获得积分10
10秒前
青易完成签到,获得积分10
11秒前
Orange应助机灵猕猴桃采纳,获得10
12秒前
wz发布了新的文献求助30
12秒前
Rason发布了新的文献求助10
13秒前
POKKKK完成签到,获得积分10
13秒前
14秒前
14秒前
why完成签到,获得积分10
14秒前
无花果应助经友菱采纳,获得10
15秒前
派对动物完成签到,获得积分10
15秒前
HHTTY完成签到 ,获得积分10
15秒前
无心的土豆完成签到 ,获得积分10
16秒前
张磊完成签到,获得积分10
17秒前
Miracle发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458