Plasma RNA sequencing of extracellular RNAs reveals potential biomarkers for non-small cell lung cancer

肺癌 癌变 核糖核酸 小桶 细胞外 生物 癌症 基因 生物标志物 基因表达 癌症研究 血浆 基因本体论 计算生物学 分子生物学 肿瘤科 医学 内科学 遗传学 生物化学
作者
Liujing Wang,Jun Wang,Erteng Jia,Zhiyu Liu,Qinyu Ge,Xiangwei Zhao
出处
期刊:Clinical Biochemistry [Elsevier BV]
卷期号:83: 65-73 被引量:11
标识
DOI:10.1016/j.clinbiochem.2020.06.004
摘要

Lung cancer is one of the most common malignancies, and it has extremely high incidence and mortality rates. Although there have been many studies focused on lung cancer biomarkers, few have reported the extracellular RNA profiles of lung cancer. In this study, we used RNA-seq technology to analyze extracellular RNAs in low volume peripheral blood plasma; we compared the differentially expressed genes from the plasma of non-small cell lung cancer (NSCLC) patients with that of healthy controls. We used RNA-seq technology and bioinformatics to analyze the extracellular RNA (exRNA) sequences of 12 human plasma samples (500 μl per sample), 6 from NSCLC patients and 6 from healthy controls. Subsequently, we used gene ontology (GO) enrichment, KEGG analysis and coexpression experiments to compare the differentially expressed genes (DEGs) and identify tumor biomarkers that were highly correlated with NSCLC. These DEGs were further verified by quantitative PCR. Approximately 20 million clean reads were produced for each plasma sample; 50–80% of the reads aligned to the human references, and hundreds of thousands of reads were counted in each plasma sample. In addition, a total of 640 genes (368 upregulated and 272 downregulated) were differentially expressed between NSCLC plasma and normal plasma. Further, we identified 7 key DEGs that are highly correlated with lung tumorigenesis: COX1, COX2, COX3, ND1, ND2, ND4L, and ATP6. exRNA-seq from a small amount (400–500 μl) of plasma opens new possibilities for exploring lung cancer biomarkers in the plasma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奋斗灵竹完成签到,获得积分10
刚刚
格非完成签到,获得积分10
1秒前
xiaxue发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
tp040900发布了新的文献求助10
3秒前
冬凌草应助生菜采纳,获得20
4秒前
莫封叶完成签到,获得积分10
6秒前
john完成签到,获得积分10
6秒前
clocksoar完成签到,获得积分10
6秒前
6秒前
6秒前
ding应助慈祥的煎蛋采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
HW完成签到 ,获得积分10
7秒前
yoyo完成签到 ,获得积分10
7秒前
zoe完成签到,获得积分10
7秒前
Tangyartie完成签到 ,获得积分10
7秒前
李佳慧完成签到,获得积分10
7秒前
迷你的雁枫完成签到 ,获得积分10
9秒前
Jasen完成签到 ,获得积分10
9秒前
Scss完成签到,获得积分10
9秒前
向言之完成签到,获得积分10
10秒前
smottom应助Lny采纳,获得10
10秒前
噼里啪啦完成签到 ,获得积分10
12秒前
12秒前
舍得完成签到,获得积分10
12秒前
ttkd11完成签到,获得积分10
12秒前
13秒前
juphen2发布了新的文献求助30
13秒前
124cndhaP完成签到,获得积分10
14秒前
龙卡烧烤店完成签到,获得积分10
14秒前
哇哈完成签到 ,获得积分10
14秒前
学呀学完成签到 ,获得积分10
14秒前
研友_24789完成签到,获得积分10
15秒前
diony010完成签到,获得积分10
15秒前
妮妮完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259