Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network

白内障 人工智能 计算机科学 眼底(子宫) 计算机视觉 图像质量 医学 眼科 图像(数学)
作者
Yuhao Luo,Kun Chen,Lei Liu,Jicheng Liu,Jianbo Mao,Genjie Ke,Mingzhai Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3374-3383 被引量:43
标识
DOI:10.1109/jbhi.2020.2999077
摘要

Cataracts are the leading cause of visual impairment worldwide. Examination of the retina through cataracts using a fundus camera is challenging and error-prone due to degraded image quality. We sought to develop an algorithm to dehaze such images to support diagnosis by either ophthalmologists or computer-aided diagnosis systems. Based on the generative adversarial network (GAN) concept, we designed two neural networks: CataractSimGAN and CataractDehazeNet. CataractSimGAN was intended for the synthesis of cataract-like images through unpaired clear retinal images and cataract images. CataractDehazeNet was trained using pairs of synthesized cataract-like images and the corresponding clear images through supervised learning. With two networks trained independently, the number of hyper-parameters was reduced, leading to better performance. We collected 400 retinal images without cataracts and 400 hazy images from cataract patients as the training dataset. Fifty cataract images and the corresponding clear images from the same patients after surgery comprised the test dataset. The clear images after surgery were used for reference to evaluate the performance of our method. CataractDehazeNet was able to enhance the degraded image from cataract patients substantially and to visualize blood vessels and the optic disc, while actively suppressing the artifacts common in application of similar methods. Thus, we developed an algorithm to improve the quality of the retinal images acquired from cataract patients. We achieved high structure similarity and fidelity between processed images and images from the same patients after cataract surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ariel完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
领导范儿应助橘里采纳,获得10
2秒前
CodeCraft应助半晴采纳,获得10
2秒前
D3完成签到,获得积分10
2秒前
wh完成签到,获得积分10
3秒前
不知道是谁完成签到,获得积分10
3秒前
紫杉罗罗完成签到,获得积分10
3秒前
3秒前
彼得大帝发布了新的文献求助10
3秒前
WuLujie发布了新的文献求助10
3秒前
高高子骞完成签到,获得积分20
4秒前
乐乐应助0812采纳,获得10
4秒前
5秒前
言小完成签到,获得积分10
5秒前
dasheenly完成签到,获得积分10
5秒前
林狗发布了新的文献求助10
5秒前
5秒前
123完成签到,获得积分10
6秒前
6秒前
kunkun完成签到,获得积分10
7秒前
kongchao008完成签到,获得积分10
7秒前
鸡汁糖浆完成签到,获得积分10
7秒前
liuqizong123完成签到,获得积分10
7秒前
言青完成签到,获得积分10
8秒前
Joshua完成签到,获得积分10
8秒前
Gu0F1完成签到 ,获得积分10
8秒前
Dreamhappy完成签到,获得积分10
8秒前
8秒前
友好慕卉完成签到,获得积分10
9秒前
许女士完成签到,获得积分10
9秒前
大力的映天完成签到 ,获得积分10
9秒前
10秒前
sober完成签到,获得积分10
11秒前
大聪明发布了新的文献求助10
11秒前
Twonej给shenmeijing的求助进行了留言
11秒前
yushanriqing完成签到,获得积分10
12秒前
beikou完成签到 ,获得积分10
13秒前
明理夏槐发布了新的文献求助10
13秒前
WuLujie完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658821
求助须知:如何正确求助?哪些是违规求助? 4824516
关于积分的说明 15083291
捐赠科研通 4817352
什么是DOI,文献DOI怎么找? 2578137
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491634