Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network

白内障 人工智能 计算机科学 眼底(子宫) 计算机视觉 图像质量 医学 眼科 图像(数学)
作者
Yuhao Luo,Kun Chen,Lei Liu,Jicheng Liu,Jianbo Mao,Genjie Ke,Mingzhai Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3374-3383 被引量:43
标识
DOI:10.1109/jbhi.2020.2999077
摘要

Cataracts are the leading cause of visual impairment worldwide. Examination of the retina through cataracts using a fundus camera is challenging and error-prone due to degraded image quality. We sought to develop an algorithm to dehaze such images to support diagnosis by either ophthalmologists or computer-aided diagnosis systems. Based on the generative adversarial network (GAN) concept, we designed two neural networks: CataractSimGAN and CataractDehazeNet. CataractSimGAN was intended for the synthesis of cataract-like images through unpaired clear retinal images and cataract images. CataractDehazeNet was trained using pairs of synthesized cataract-like images and the corresponding clear images through supervised learning. With two networks trained independently, the number of hyper-parameters was reduced, leading to better performance. We collected 400 retinal images without cataracts and 400 hazy images from cataract patients as the training dataset. Fifty cataract images and the corresponding clear images from the same patients after surgery comprised the test dataset. The clear images after surgery were used for reference to evaluate the performance of our method. CataractDehazeNet was able to enhance the degraded image from cataract patients substantially and to visualize blood vessels and the optic disc, while actively suppressing the artifacts common in application of similar methods. Thus, we developed an algorithm to improve the quality of the retinal images acquired from cataract patients. We achieved high structure similarity and fidelity between processed images and images from the same patients after cataract surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHW发布了新的文献求助10
刚刚
三岁半完成签到,获得积分10
4秒前
眼睛大书兰完成签到,获得积分20
5秒前
xiaowang发布了新的文献求助10
6秒前
6秒前
7秒前
上好佳完成签到,获得积分10
8秒前
8秒前
9秒前
李健应助眼睛大书兰采纳,获得30
9秒前
小二郎应助文艺的清炎采纳,获得10
10秒前
xinghui应助gcy采纳,获得10
10秒前
可鹿丽完成签到,获得积分10
11秒前
ElviraHuang发布了新的文献求助10
11秒前
Lyra发布了新的文献求助10
12秒前
上官若男应助辞树采纳,获得10
12秒前
12秒前
13秒前
14秒前
15秒前
15秒前
Soda8513发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI6应助优雅友菱采纳,获得10
17秒前
17秒前
SJJ应助xiaowang采纳,获得30
17秒前
晚湖发布了新的文献求助10
18秒前
jack_kunn发布了新的文献求助10
18秒前
19秒前
轶Y发布了新的文献求助10
19秒前
19秒前
涂文波完成签到,获得积分10
19秒前
温柔柜子发布了新的文献求助10
20秒前
qqaeao发布了新的文献求助10
20秒前
21秒前
21秒前
玩命做研究完成签到 ,获得积分10
21秒前
22秒前
小张发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646