亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network

白内障 人工智能 计算机科学 眼底(子宫) 计算机视觉 图像质量 医学 眼科 图像(数学)
作者
Yuhao Luo,Kun Chen,Lei Liu,Jicheng Liu,Jianbo Mao,Genjie Ke,Mingzhai Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3374-3383 被引量:43
标识
DOI:10.1109/jbhi.2020.2999077
摘要

Cataracts are the leading cause of visual impairment worldwide. Examination of the retina through cataracts using a fundus camera is challenging and error-prone due to degraded image quality. We sought to develop an algorithm to dehaze such images to support diagnosis by either ophthalmologists or computer-aided diagnosis systems. Based on the generative adversarial network (GAN) concept, we designed two neural networks: CataractSimGAN and CataractDehazeNet. CataractSimGAN was intended for the synthesis of cataract-like images through unpaired clear retinal images and cataract images. CataractDehazeNet was trained using pairs of synthesized cataract-like images and the corresponding clear images through supervised learning. With two networks trained independently, the number of hyper-parameters was reduced, leading to better performance. We collected 400 retinal images without cataracts and 400 hazy images from cataract patients as the training dataset. Fifty cataract images and the corresponding clear images from the same patients after surgery comprised the test dataset. The clear images after surgery were used for reference to evaluate the performance of our method. CataractDehazeNet was able to enhance the degraded image from cataract patients substantially and to visualize blood vessels and the optic disc, while actively suppressing the artifacts common in application of similar methods. Thus, we developed an algorithm to improve the quality of the retinal images acquired from cataract patients. We achieved high structure similarity and fidelity between processed images and images from the same patients after cataract surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Utopia1632完成签到,获得积分10
29秒前
小鸡完成签到 ,获得积分10
42秒前
50秒前
51秒前
知悉发布了新的文献求助10
56秒前
ding应助科研通管家采纳,获得10
1分钟前
三岁应助ceeray23采纳,获得20
1分钟前
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
zly完成签到 ,获得积分0
1分钟前
Nilnael发布了新的文献求助10
1分钟前
浮游应助ceeray23采纳,获得20
1分钟前
HaCat完成签到,获得积分10
1分钟前
1分钟前
1分钟前
采薇发布了新的文献求助10
1分钟前
yuan完成签到,获得积分10
1分钟前
小蘑菇应助jing采纳,获得10
2分钟前
搜集达人应助Luke采纳,获得10
2分钟前
2分钟前
2分钟前
jing发布了新的文献求助10
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
程小柒完成签到 ,获得积分10
2分钟前
Demi_Ming关注了科研通微信公众号
2分钟前
烟花应助科研通管家采纳,获得10
3分钟前
坚强的秋白完成签到,获得积分10
3分钟前
xiawanren00完成签到,获得积分10
4分钟前
4分钟前
采薇发布了新的文献求助10
4分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
无极微光应助科研通管家采纳,获得20
5分钟前
任性云朵完成签到 ,获得积分10
5分钟前
大模型应助jing采纳,获得10
5分钟前
5分钟前
奋斗一刀完成签到,获得积分20
5分钟前
6分钟前
6分钟前
jing发布了新的文献求助10
6分钟前
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644846
求助须知:如何正确求助?哪些是违规求助? 4765929
关于积分的说明 15025735
捐赠科研通 4803180
什么是DOI,文献DOI怎么找? 2568067
邀请新用户注册赠送积分活动 1525533
关于科研通互助平台的介绍 1485079