Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network

白内障 人工智能 计算机科学 眼底(子宫) 计算机视觉 图像质量 医学 眼科 图像(数学)
作者
Yuhao Luo,Kun Chen,Lei Liu,Jicheng Liu,Jianbo Mao,Genjie Ke,Mingzhai Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3374-3383 被引量:43
标识
DOI:10.1109/jbhi.2020.2999077
摘要

Cataracts are the leading cause of visual impairment worldwide. Examination of the retina through cataracts using a fundus camera is challenging and error-prone due to degraded image quality. We sought to develop an algorithm to dehaze such images to support diagnosis by either ophthalmologists or computer-aided diagnosis systems. Based on the generative adversarial network (GAN) concept, we designed two neural networks: CataractSimGAN and CataractDehazeNet. CataractSimGAN was intended for the synthesis of cataract-like images through unpaired clear retinal images and cataract images. CataractDehazeNet was trained using pairs of synthesized cataract-like images and the corresponding clear images through supervised learning. With two networks trained independently, the number of hyper-parameters was reduced, leading to better performance. We collected 400 retinal images without cataracts and 400 hazy images from cataract patients as the training dataset. Fifty cataract images and the corresponding clear images from the same patients after surgery comprised the test dataset. The clear images after surgery were used for reference to evaluate the performance of our method. CataractDehazeNet was able to enhance the degraded image from cataract patients substantially and to visualize blood vessels and the optic disc, while actively suppressing the artifacts common in application of similar methods. Thus, we developed an algorithm to improve the quality of the retinal images acquired from cataract patients. We achieved high structure similarity and fidelity between processed images and images from the same patients after cataract surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范戴克发布了新的文献求助10
2秒前
3秒前
今后应助xuxu采纳,获得10
3秒前
wanci应助Zed采纳,获得10
4秒前
隐形曼青应助努力的小朱采纳,获得10
4秒前
Windy发布了新的文献求助10
4秒前
打打应助zyy采纳,获得10
5秒前
5秒前
6秒前
zhanzhanzhan完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助Msjjfjc采纳,获得10
7秒前
小仙女212发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
完美世界应助小巧的谷蕊采纳,获得10
9秒前
TTT完成签到,获得积分10
9秒前
彩色嚣发布了新的文献求助10
11秒前
11秒前
11秒前
时尚铁身完成签到 ,获得积分10
11秒前
Planetary发布了新的文献求助10
11秒前
12秒前
asd发布了新的文献求助10
12秒前
Windy完成签到,获得积分10
12秒前
renovel发布了新的文献求助10
13秒前
li完成签到,获得积分10
13秒前
15秒前
梁三柏发布了新的文献求助200
16秒前
stand发布了新的文献求助10
16秒前
月亮与5便士关注了科研通微信公众号
16秒前
songnvshi发布了新的文献求助10
16秒前
16秒前
我是鸡汤发布了新的文献求助10
17秒前
17秒前
17秒前
大力鹤完成签到 ,获得积分10
17秒前
18秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128679
求助须知:如何正确求助?哪些是违规求助? 2779501
关于积分的说明 7743462
捐赠科研通 2434802
什么是DOI,文献DOI怎么找? 1293635
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514