Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network

白内障 人工智能 计算机科学 眼底(子宫) 计算机视觉 图像质量 医学 眼科 图像(数学)
作者
Yuhao Luo,Kun Chen,Lei Liu,Jicheng Liu,Jianbo Mao,Genjie Ke,Mingzhai Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3374-3383 被引量:43
标识
DOI:10.1109/jbhi.2020.2999077
摘要

Cataracts are the leading cause of visual impairment worldwide. Examination of the retina through cataracts using a fundus camera is challenging and error-prone due to degraded image quality. We sought to develop an algorithm to dehaze such images to support diagnosis by either ophthalmologists or computer-aided diagnosis systems. Based on the generative adversarial network (GAN) concept, we designed two neural networks: CataractSimGAN and CataractDehazeNet. CataractSimGAN was intended for the synthesis of cataract-like images through unpaired clear retinal images and cataract images. CataractDehazeNet was trained using pairs of synthesized cataract-like images and the corresponding clear images through supervised learning. With two networks trained independently, the number of hyper-parameters was reduced, leading to better performance. We collected 400 retinal images without cataracts and 400 hazy images from cataract patients as the training dataset. Fifty cataract images and the corresponding clear images from the same patients after surgery comprised the test dataset. The clear images after surgery were used for reference to evaluate the performance of our method. CataractDehazeNet was able to enhance the degraded image from cataract patients substantially and to visualize blood vessels and the optic disc, while actively suppressing the artifacts common in application of similar methods. Thus, we developed an algorithm to improve the quality of the retinal images acquired from cataract patients. We achieved high structure similarity and fidelity between processed images and images from the same patients after cataract surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时倾完成签到,获得积分10
刚刚
清脆冬日完成签到 ,获得积分10
刚刚
1秒前
善学以致用应助Mipaa采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
积极松完成签到 ,获得积分10
4秒前
一又二分之一完成签到,获得积分10
5秒前
xieyangyu完成签到 ,获得积分10
5秒前
ARESCI发布了新的文献求助10
6秒前
lyp发布了新的文献求助10
7秒前
淡淡尔烟发布了新的文献求助10
9秒前
Gloyxtg发布了新的文献求助10
9秒前
思源应助王月帆采纳,获得10
10秒前
99668完成签到,获得积分10
11秒前
小马甲应助周美言采纳,获得10
11秒前
可爱的函函应助以鹿之路采纳,获得10
11秒前
Roxanne发布了新的文献求助20
11秒前
11秒前
Jasper应助星星采纳,获得10
12秒前
12秒前
kikeva发布了新的文献求助10
15秒前
情怀应助彩彩采纳,获得10
16秒前
大模型应助Heyley采纳,获得10
16秒前
科研通AI6应助hh采纳,获得10
16秒前
研友_VZG7GZ应助叶涛采纳,获得10
17秒前
海棠发布了新的文献求助10
18秒前
云上完成签到,获得积分10
19秒前
20秒前
曦cherish完成签到,获得积分10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
啊哦发布了新的文献求助10
25秒前
娇气的冬菱完成签到,获得积分10
26秒前
思源应助谢谢谢采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950