Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network

白内障 人工智能 计算机科学 眼底(子宫) 计算机视觉 图像质量 医学 眼科 图像(数学)
作者
Yuhao Luo,Kun Chen,Lei Liu,Jicheng Liu,Jianbo Mao,Genjie Ke,Mingzhai Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3374-3383 被引量:43
标识
DOI:10.1109/jbhi.2020.2999077
摘要

Cataracts are the leading cause of visual impairment worldwide. Examination of the retina through cataracts using a fundus camera is challenging and error-prone due to degraded image quality. We sought to develop an algorithm to dehaze such images to support diagnosis by either ophthalmologists or computer-aided diagnosis systems. Based on the generative adversarial network (GAN) concept, we designed two neural networks: CataractSimGAN and CataractDehazeNet. CataractSimGAN was intended for the synthesis of cataract-like images through unpaired clear retinal images and cataract images. CataractDehazeNet was trained using pairs of synthesized cataract-like images and the corresponding clear images through supervised learning. With two networks trained independently, the number of hyper-parameters was reduced, leading to better performance. We collected 400 retinal images without cataracts and 400 hazy images from cataract patients as the training dataset. Fifty cataract images and the corresponding clear images from the same patients after surgery comprised the test dataset. The clear images after surgery were used for reference to evaluate the performance of our method. CataractDehazeNet was able to enhance the degraded image from cataract patients substantially and to visualize blood vessels and the optic disc, while actively suppressing the artifacts common in application of similar methods. Thus, we developed an algorithm to improve the quality of the retinal images acquired from cataract patients. We achieved high structure similarity and fidelity between processed images and images from the same patients after cataract surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助niko采纳,获得10
刚刚
星辰大海应助vvvg采纳,获得30
1秒前
daniel关注了科研通微信公众号
1秒前
科研通AI2S应助niko采纳,获得10
1秒前
英姑应助niko采纳,获得10
1秒前
香蕉觅云应助niko采纳,获得30
1秒前
1秒前
Hello应助离线采纳,获得10
1秒前
小白完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
科目三应助端庄的毛豆采纳,获得10
4秒前
ZSP完成签到,获得积分10
4秒前
上官若男应助kk采纳,获得10
5秒前
5秒前
wanci应助美满嘉熙采纳,获得10
5秒前
英姑应助li采纳,获得10
6秒前
香蕉觅云应助阔达犀牛采纳,获得10
7秒前
李爱国应助lx123采纳,获得10
7秒前
顾矜应助丘奇采纳,获得10
8秒前
豆芽菜发布了新的文献求助10
8秒前
ZSP发布了新的文献求助10
8秒前
maize完成签到 ,获得积分10
9秒前
slx发布了新的文献求助10
9秒前
10秒前
共享精神应助niko采纳,获得30
10秒前
英姑应助niko采纳,获得10
10秒前
斯文败类应助niko采纳,获得10
10秒前
脑洞疼应助niko采纳,获得10
10秒前
田様应助niko采纳,获得10
10秒前
慕青应助niko采纳,获得10
10秒前
英俊的铭应助niko采纳,获得10
10秒前
李健应助niko采纳,获得10
10秒前
Orange应助niko采纳,获得10
10秒前
ding应助niko采纳,获得10
10秒前
浮游应助神勇语柳采纳,获得10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514286
求助须知:如何正确求助?哪些是违规求助? 4608193
关于积分的说明 14508898
捐赠科研通 4544028
什么是DOI,文献DOI怎么找? 2489864
邀请新用户注册赠送积分活动 1471799
关于科研通互助平台的介绍 1443710