Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network

白内障 人工智能 计算机科学 眼底(子宫) 计算机视觉 图像质量 医学 眼科 图像(数学)
作者
Yuhao Luo,Kun Chen,Lei Liu,Jicheng Liu,Jianbo Mao,Genjie Ke,Mingzhai Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3374-3383 被引量:43
标识
DOI:10.1109/jbhi.2020.2999077
摘要

Cataracts are the leading cause of visual impairment worldwide. Examination of the retina through cataracts using a fundus camera is challenging and error-prone due to degraded image quality. We sought to develop an algorithm to dehaze such images to support diagnosis by either ophthalmologists or computer-aided diagnosis systems. Based on the generative adversarial network (GAN) concept, we designed two neural networks: CataractSimGAN and CataractDehazeNet. CataractSimGAN was intended for the synthesis of cataract-like images through unpaired clear retinal images and cataract images. CataractDehazeNet was trained using pairs of synthesized cataract-like images and the corresponding clear images through supervised learning. With two networks trained independently, the number of hyper-parameters was reduced, leading to better performance. We collected 400 retinal images without cataracts and 400 hazy images from cataract patients as the training dataset. Fifty cataract images and the corresponding clear images from the same patients after surgery comprised the test dataset. The clear images after surgery were used for reference to evaluate the performance of our method. CataractDehazeNet was able to enhance the degraded image from cataract patients substantially and to visualize blood vessels and the optic disc, while actively suppressing the artifacts common in application of similar methods. Thus, we developed an algorithm to improve the quality of the retinal images acquired from cataract patients. We achieved high structure similarity and fidelity between processed images and images from the same patients after cataract surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackie完成签到,获得积分10
刚刚
酷波er应助mmol采纳,获得10
1秒前
nelson发布了新的文献求助10
1秒前
布莱德完成签到,获得积分20
1秒前
xiaoqi发布了新的文献求助10
1秒前
1秒前
chendahuanhuan完成签到,获得积分10
2秒前
冷傲冬易完成签到,获得积分10
2秒前
伶俐一曲完成签到,获得积分10
2秒前
2秒前
郭柳含完成签到,获得积分10
2秒前
是江江哥啊完成签到,获得积分10
2秒前
八岁完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
笑点低咖啡完成签到,获得积分10
3秒前
F123456完成签到,获得积分10
3秒前
摆烂小子发布了新的文献求助10
4秒前
无花果应助小魏采纳,获得10
4秒前
wanci应助张东采纳,获得10
4秒前
4秒前
完美世界应助emmmmmq采纳,获得10
5秒前
安静的梦凡完成签到,获得积分10
5秒前
叶博完成签到,获得积分10
5秒前
INNER_PACE发布了新的文献求助10
6秒前
6秒前
huhuhuhuxuan完成签到,获得积分10
7秒前
ding应助嘎嘎的鸡神采纳,获得10
7秒前
小明同学完成签到,获得积分10
7秒前
hill完成签到,获得积分10
7秒前
desperado完成签到,获得积分10
7秒前
8秒前
核桃完成签到,获得积分10
8秒前
8秒前
KeiQ完成签到,获得积分10
8秒前
研友_Y59685完成签到 ,获得积分10
8秒前
JNKNY完成签到,获得积分10
8秒前
爆米花应助苹果书兰采纳,获得10
8秒前
方文浩发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902185
求助须知:如何正确求助?哪些是违规求助? 4181228
关于积分的说明 12980171
捐赠科研通 3946514
什么是DOI,文献DOI怎么找? 2164652
邀请新用户注册赠送积分活动 1182883
关于科研通互助平台的介绍 1089373