Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [<sup>35</sup>S]GTPγS Binding Assays

化学 G蛋白偶联受体 计算生物学 反激动剂 兴奋剂 受体 药物发现 生物 计算机科学 生物信息学 药理学 化学 生物化学
作者
Rebeca Diez-Alarcia,Víctor Yáñez-Pérez,Itziar Muneta-Arrate,Sonia Arrasate,Esther Lete,J. Javier Meana,Humberto González-Díaz
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:10 (11): 4476-4491 被引量:19
标识
DOI:10.1021/acschemneuro.9b00302
摘要

G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like the Chemical European Molecular Biology Laboratory (ChEMBL) database. These data are also very complex covering changes in drug chemical structure and assay conditions like c0 = activity parameter (Ki, IC50, etc.), c1 = target protein, c2 = cell line, c3 = assay organism, etc., making difficult the analysis of these databases that are placed in the borders of a Big Data challenge. One of the aims of this work is to develop a computational model able to predict new GPCRs targeting drugs taking into consideration multiple conditions of assay. Another objective is to perform new predictive and experimental studies of selective 5-HTA2 receptor agonist, antagonist, or inverse agonist in human comparing the results with those from the literature. In this work, we combined Perturbation Theory (PT) and Machine Learning (ML) to seek a general PTML model for this data set. We analyzed 343 738 unique compounds with 812 072 end points (assay outcomes), with 185 different experimental parameters, 592 protein targets, 51 cell lines, and/or 55 organisms (species). The best PTML linear model found has three input variables only and predicted 56 202/58 653 positive outcomes (sensitivity = 95.8%) and 470 230/550 401 control cases (specificity = 85.4%) in training series. The model also predicted correctly 18 732/19 549 (95.8%) of positive outcomes and 156 739/183 469 (85.4%) of cases in external validation series. To illustrate its practical use, we used the model to predict the outcomes of six different 5-HT2A receptor drugs, namely, TCB-2, DOI, DOB, altanserin, pimavanserin, and nelotanserin, in a very large number of different pharmacological assays. 5-HT2A receptors are altered in schizophrenia and represent drug target for antipsychotic therapeutic activity. The model correctly predicted 93.83% (76 of 86) experimental results for these compounds reported in ChEMBL. Moreover, [35S]GTPγS binding assays were performed experimentally with the same six drugs with the aim of determining their potency and efficacy in the modulation of G-proteins in human brain tissue. The antagonist ketanserin was included as inactive drug with demonstrated affinity for 5-HT2A/C receptors. Our results demonstrate that some of these drugs, previously described as serotonin 5-HT2A receptor agonists, antagonists, or inverse agonists, are not so specific and show different intrinsic activity to that previously reported. Overall, this work opens a new gate for the prediction of GPCRs targeting compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助whqpeter采纳,获得10
1秒前
Changlu发布了新的文献求助10
1秒前
浮游应助Painkiller_采纳,获得10
3秒前
重要青柏完成签到,获得积分10
3秒前
Mh发布了新的文献求助10
3秒前
heyunxiang完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
王小明完成签到,获得积分10
6秒前
olivia完成签到,获得积分10
6秒前
wang完成签到,获得积分10
7秒前
小白鞋完成签到 ,获得积分10
8秒前
懦弱的博涛完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
淡淡的幻竹完成签到,获得积分10
11秒前
123456发布了新的文献求助10
11秒前
元骏发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
long0809完成签到,获得积分10
13秒前
bkagyin应助Unpaid采纳,获得10
14秒前
14秒前
奋斗的绝悟完成签到,获得积分10
15秒前
情怀应助Painkiller_采纳,获得10
16秒前
元骏发布了新的文献求助10
16秒前
元骏发布了新的文献求助10
16秒前
元骏发布了新的文献求助10
16秒前
元骏发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400