Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [<sup>35</sup>S]GTPγS Binding Assays

化学 G蛋白偶联受体 计算生物学 反激动剂 兴奋剂 受体 药物发现 生物 计算机科学 生物信息学 药理学 化学 生物化学
作者
Rebeca Diez-Alarcia,Víctor Yáñez-Pérez,Itziar Muneta-Arrate,Sonia Arrasate,Esther Lete,J. Javier Meana,Humberto González-Díaz
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:10 (11): 4476-4491 被引量:19
标识
DOI:10.1021/acschemneuro.9b00302
摘要

G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like the Chemical European Molecular Biology Laboratory (ChEMBL) database. These data are also very complex covering changes in drug chemical structure and assay conditions like c0 = activity parameter (Ki, IC50, etc.), c1 = target protein, c2 = cell line, c3 = assay organism, etc., making difficult the analysis of these databases that are placed in the borders of a Big Data challenge. One of the aims of this work is to develop a computational model able to predict new GPCRs targeting drugs taking into consideration multiple conditions of assay. Another objective is to perform new predictive and experimental studies of selective 5-HTA2 receptor agonist, antagonist, or inverse agonist in human comparing the results with those from the literature. In this work, we combined Perturbation Theory (PT) and Machine Learning (ML) to seek a general PTML model for this data set. We analyzed 343 738 unique compounds with 812 072 end points (assay outcomes), with 185 different experimental parameters, 592 protein targets, 51 cell lines, and/or 55 organisms (species). The best PTML linear model found has three input variables only and predicted 56 202/58 653 positive outcomes (sensitivity = 95.8%) and 470 230/550 401 control cases (specificity = 85.4%) in training series. The model also predicted correctly 18 732/19 549 (95.8%) of positive outcomes and 156 739/183 469 (85.4%) of cases in external validation series. To illustrate its practical use, we used the model to predict the outcomes of six different 5-HT2A receptor drugs, namely, TCB-2, DOI, DOB, altanserin, pimavanserin, and nelotanserin, in a very large number of different pharmacological assays. 5-HT2A receptors are altered in schizophrenia and represent drug target for antipsychotic therapeutic activity. The model correctly predicted 93.83% (76 of 86) experimental results for these compounds reported in ChEMBL. Moreover, [35S]GTPγS binding assays were performed experimentally with the same six drugs with the aim of determining their potency and efficacy in the modulation of G-proteins in human brain tissue. The antagonist ketanserin was included as inactive drug with demonstrated affinity for 5-HT2A/C receptors. Our results demonstrate that some of these drugs, previously described as serotonin 5-HT2A receptor agonists, antagonists, or inverse agonists, are not so specific and show different intrinsic activity to that previously reported. Overall, this work opens a new gate for the prediction of GPCRs targeting compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曼曼发布了新的文献求助10
刚刚
3秒前
4秒前
4秒前
4秒前
alt发布了新的文献求助10
8秒前
年轻蓝发布了新的文献求助10
8秒前
刻苦冰颜发布了新的文献求助10
9秒前
Imstemcell完成签到,获得积分10
9秒前
科研菜狗完成签到,获得积分10
11秒前
12秒前
健忘的夜阑完成签到,获得积分10
12秒前
cx发布了新的文献求助10
14秒前
leaolf完成签到,获得积分10
15秒前
lyn发布了新的文献求助10
15秒前
16秒前
alt完成签到,获得积分20
18秒前
yihuifa完成签到 ,获得积分10
18秒前
搜集达人应助lzdyyy采纳,获得10
19秒前
年轻蓝完成签到,获得积分10
19秒前
自然有手就行完成签到 ,获得积分10
20秒前
小杨完成签到 ,获得积分10
21秒前
SS驳回了mc应助
21秒前
第七兵团司令完成签到,获得积分10
21秒前
21秒前
二三发布了新的文献求助10
22秒前
Xiaoxiao应助lyn采纳,获得10
23秒前
25秒前
wxy完成签到 ,获得积分10
28秒前
Owen应助lee采纳,获得10
30秒前
蒙开心完成签到 ,获得积分10
33秒前
二三发布了新的文献求助10
33秒前
pisinaverde完成签到,获得积分10
37秒前
辞忧完成签到 ,获得积分10
39秒前
世界和平完成签到,获得积分10
44秒前
Joker完成签到 ,获得积分10
47秒前
结实半邪完成签到,获得积分10
49秒前
sxs完成签到 ,获得积分10
49秒前
54秒前
田様应助科研通管家采纳,获得30
54秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343