Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [<sup>35</sup>S]GTPγS Binding Assays

化学 G蛋白偶联受体 计算生物学 反激动剂 兴奋剂 受体 药物发现 生物 计算机科学 生物信息学 药理学 化学 生物化学
作者
Rebeca Diez-Alarcia,Víctor Yáñez-Pérez,Itziar Muneta-Arrate,Sonia Arrasate,Esther Lete,J. Javier Meana,Humberto González-Díaz
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:10 (11): 4476-4491 被引量:19
标识
DOI:10.1021/acschemneuro.9b00302
摘要

G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like the Chemical European Molecular Biology Laboratory (ChEMBL) database. These data are also very complex covering changes in drug chemical structure and assay conditions like c0 = activity parameter (Ki, IC50, etc.), c1 = target protein, c2 = cell line, c3 = assay organism, etc., making difficult the analysis of these databases that are placed in the borders of a Big Data challenge. One of the aims of this work is to develop a computational model able to predict new GPCRs targeting drugs taking into consideration multiple conditions of assay. Another objective is to perform new predictive and experimental studies of selective 5-HTA2 receptor agonist, antagonist, or inverse agonist in human comparing the results with those from the literature. In this work, we combined Perturbation Theory (PT) and Machine Learning (ML) to seek a general PTML model for this data set. We analyzed 343 738 unique compounds with 812 072 end points (assay outcomes), with 185 different experimental parameters, 592 protein targets, 51 cell lines, and/or 55 organisms (species). The best PTML linear model found has three input variables only and predicted 56 202/58 653 positive outcomes (sensitivity = 95.8%) and 470 230/550 401 control cases (specificity = 85.4%) in training series. The model also predicted correctly 18 732/19 549 (95.8%) of positive outcomes and 156 739/183 469 (85.4%) of cases in external validation series. To illustrate its practical use, we used the model to predict the outcomes of six different 5-HT2A receptor drugs, namely, TCB-2, DOI, DOB, altanserin, pimavanserin, and nelotanserin, in a very large number of different pharmacological assays. 5-HT2A receptors are altered in schizophrenia and represent drug target for antipsychotic therapeutic activity. The model correctly predicted 93.83% (76 of 86) experimental results for these compounds reported in ChEMBL. Moreover, [35S]GTPγS binding assays were performed experimentally with the same six drugs with the aim of determining their potency and efficacy in the modulation of G-proteins in human brain tissue. The antagonist ketanserin was included as inactive drug with demonstrated affinity for 5-HT2A/C receptors. Our results demonstrate that some of these drugs, previously described as serotonin 5-HT2A receptor agonists, antagonists, or inverse agonists, are not so specific and show different intrinsic activity to that previously reported. Overall, this work opens a new gate for the prediction of GPCRs targeting compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcm发布了新的文献求助10
1秒前
barretace完成签到,获得积分10
2秒前
2秒前
杨柳完成签到,获得积分20
3秒前
Orange应助pingyy采纳,获得10
3秒前
科研通AI6应助ddd采纳,获得10
3秒前
大Doctor陈发布了新的文献求助30
3秒前
3秒前
快乐难敌发布了新的文献求助10
4秒前
Dsivan发布了新的文献求助10
4秒前
4秒前
Steven完成签到,获得积分10
5秒前
leaolf应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
123完成签到,获得积分10
6秒前
leaolf应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
Dk应助科研通管家采纳,获得20
6秒前
今后应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
7秒前
传奇3应助JJJJ采纳,获得10
7秒前
li发布了新的文献求助10
8秒前
8秒前
8秒前
小二郎应助silence63采纳,获得10
8秒前
nimama发布了新的文献求助10
8秒前
SciGPT应助大胆乐荷采纳,获得30
9秒前
华仔应助xu55采纳,获得10
10秒前
走走道疯了完成签到,获得积分20
10秒前
11秒前
研友_VZG64n发布了新的文献求助10
11秒前
机智寒珊发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600811
求助须知:如何正确求助?哪些是违规求助? 4010804
关于积分的说明 12417574
捐赠科研通 3690690
什么是DOI,文献DOI怎么找? 2034531
邀请新用户注册赠送积分活动 1067930
科研通“疑难数据库(出版商)”最低求助积分说明 952602