Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [<sup>35</sup>S]GTPγS Binding Assays

化学 G蛋白偶联受体 计算生物学 反激动剂 兴奋剂 受体 药物发现 生物 计算机科学 生物信息学 药理学 化学 生物化学
作者
Rebeca Diez-Alarcia,Víctor Yáñez-Pérez,Itziar Muneta-Arrate,Sonia Arrasate,Esther Lete,J. Javier Meana,Humberto González-Díaz
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:10 (11): 4476-4491 被引量:19
标识
DOI:10.1021/acschemneuro.9b00302
摘要

G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like the Chemical European Molecular Biology Laboratory (ChEMBL) database. These data are also very complex covering changes in drug chemical structure and assay conditions like c0 = activity parameter (Ki, IC50, etc.), c1 = target protein, c2 = cell line, c3 = assay organism, etc., making difficult the analysis of these databases that are placed in the borders of a Big Data challenge. One of the aims of this work is to develop a computational model able to predict new GPCRs targeting drugs taking into consideration multiple conditions of assay. Another objective is to perform new predictive and experimental studies of selective 5-HTA2 receptor agonist, antagonist, or inverse agonist in human comparing the results with those from the literature. In this work, we combined Perturbation Theory (PT) and Machine Learning (ML) to seek a general PTML model for this data set. We analyzed 343 738 unique compounds with 812 072 end points (assay outcomes), with 185 different experimental parameters, 592 protein targets, 51 cell lines, and/or 55 organisms (species). The best PTML linear model found has three input variables only and predicted 56 202/58 653 positive outcomes (sensitivity = 95.8%) and 470 230/550 401 control cases (specificity = 85.4%) in training series. The model also predicted correctly 18 732/19 549 (95.8%) of positive outcomes and 156 739/183 469 (85.4%) of cases in external validation series. To illustrate its practical use, we used the model to predict the outcomes of six different 5-HT2A receptor drugs, namely, TCB-2, DOI, DOB, altanserin, pimavanserin, and nelotanserin, in a very large number of different pharmacological assays. 5-HT2A receptors are altered in schizophrenia and represent drug target for antipsychotic therapeutic activity. The model correctly predicted 93.83% (76 of 86) experimental results for these compounds reported in ChEMBL. Moreover, [35S]GTPγS binding assays were performed experimentally with the same six drugs with the aim of determining their potency and efficacy in the modulation of G-proteins in human brain tissue. The antagonist ketanserin was included as inactive drug with demonstrated affinity for 5-HT2A/C receptors. Our results demonstrate that some of these drugs, previously described as serotonin 5-HT2A receptor agonists, antagonists, or inverse agonists, are not so specific and show different intrinsic activity to that previously reported. Overall, this work opens a new gate for the prediction of GPCRs targeting compounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助okghy采纳,获得10
刚刚
无花果应助辛勤云朵采纳,获得10
1秒前
星辰大海应助滑步小镰刀采纳,获得10
1秒前
1秒前
wxl发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
红墨发布了新的文献求助10
2秒前
无聊的映真完成签到 ,获得积分10
3秒前
科研通AI6应助自由元冬采纳,获得10
4秒前
大模型应助王铎采纳,获得20
4秒前
4秒前
4秒前
yjc发布了新的文献求助10
4秒前
北海未暖完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Eon发布了新的文献求助10
4秒前
优雅盼海完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
沉默南露发布了新的文献求助10
6秒前
煎饼发布了新的文献求助30
7秒前
7秒前
XUAN发布了新的文献求助10
7秒前
7秒前
脑洞疼应助Twinkle采纳,获得30
7秒前
7秒前
南乔完成签到,获得积分10
8秒前
苏亚婷完成签到,获得积分10
8秒前
8秒前
科研通AI6应助懵懵采纳,获得10
9秒前
科研通AI6应助lamica采纳,获得10
10秒前
hua发布了新的文献求助10
10秒前
共享精神应助雨木十八君采纳,获得10
10秒前
yuanbenshimao完成签到 ,获得积分10
10秒前
爆米花应助沉默南露采纳,获得10
10秒前
英姑应助真实的立轩采纳,获得30
11秒前
柳觅夏完成签到,获得积分10
11秒前
体贴乐巧发布了新的文献求助20
12秒前
祁忘忧发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902