Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [<sup>35</sup>S]GTPγS Binding Assays

化学 G蛋白偶联受体 计算生物学 反激动剂 兴奋剂 受体 药物发现 生物 计算机科学 生物信息学 药理学 化学 生物化学
作者
Rebeca Diez-Alarcia,Víctor Yáñez-Pérez,Itziar Muneta-Arrate,Sonia Arrasate,Esther Lete,J. Javier Meana,Humberto González-Díaz
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:10 (11): 4476-4491 被引量:19
标识
DOI:10.1021/acschemneuro.9b00302
摘要

G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like the Chemical European Molecular Biology Laboratory (ChEMBL) database. These data are also very complex covering changes in drug chemical structure and assay conditions like c0 = activity parameter (Ki, IC50, etc.), c1 = target protein, c2 = cell line, c3 = assay organism, etc., making difficult the analysis of these databases that are placed in the borders of a Big Data challenge. One of the aims of this work is to develop a computational model able to predict new GPCRs targeting drugs taking into consideration multiple conditions of assay. Another objective is to perform new predictive and experimental studies of selective 5-HTA2 receptor agonist, antagonist, or inverse agonist in human comparing the results with those from the literature. In this work, we combined Perturbation Theory (PT) and Machine Learning (ML) to seek a general PTML model for this data set. We analyzed 343 738 unique compounds with 812 072 end points (assay outcomes), with 185 different experimental parameters, 592 protein targets, 51 cell lines, and/or 55 organisms (species). The best PTML linear model found has three input variables only and predicted 56 202/58 653 positive outcomes (sensitivity = 95.8%) and 470 230/550 401 control cases (specificity = 85.4%) in training series. The model also predicted correctly 18 732/19 549 (95.8%) of positive outcomes and 156 739/183 469 (85.4%) of cases in external validation series. To illustrate its practical use, we used the model to predict the outcomes of six different 5-HT2A receptor drugs, namely, TCB-2, DOI, DOB, altanserin, pimavanserin, and nelotanserin, in a very large number of different pharmacological assays. 5-HT2A receptors are altered in schizophrenia and represent drug target for antipsychotic therapeutic activity. The model correctly predicted 93.83% (76 of 86) experimental results for these compounds reported in ChEMBL. Moreover, [35S]GTPγS binding assays were performed experimentally with the same six drugs with the aim of determining their potency and efficacy in the modulation of G-proteins in human brain tissue. The antagonist ketanserin was included as inactive drug with demonstrated affinity for 5-HT2A/C receptors. Our results demonstrate that some of these drugs, previously described as serotonin 5-HT2A receptor agonists, antagonists, or inverse agonists, are not so specific and show different intrinsic activity to that previously reported. Overall, this work opens a new gate for the prediction of GPCRs targeting compounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzk完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
xinyuli发布了新的文献求助10
1秒前
铭名洺完成签到 ,获得积分10
2秒前
2秒前
在水一方应助我的阳光采纳,获得10
3秒前
zmm完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
热情笑卉完成签到,获得积分10
5秒前
晨风发布了新的文献求助10
5秒前
暴躁的太阳完成签到,获得积分10
6秒前
tigger发布了新的文献求助10
6秒前
wzx发布了新的文献求助20
6秒前
6秒前
王志鹏完成签到 ,获得积分10
7秒前
xss发布了新的文献求助10
7秒前
李爱国应助sunstar采纳,获得10
8秒前
文艺代灵完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
DUAN完成签到,获得积分10
9秒前
科研小蔡发布了新的文献求助10
10秒前
田di完成签到 ,获得积分10
10秒前
11秒前
科研通AI6应助雷培采纳,获得10
12秒前
12秒前
actor2006发布了新的文献求助100
12秒前
12秒前
12秒前
12秒前
无花果应助FFFF采纳,获得30
12秒前
tantan完成签到,获得积分10
13秒前
踏实采波完成签到,获得积分10
14秒前
sw发布了新的文献求助10
15秒前
15秒前
weita完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142