亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TPPO: A Novel Trajectory Predictor with Pseudo Oracle

潜变量 弹道 甲骨文公司 变量(数学) 计算机科学 随机性 基本事实 潜变量模型 机器学习 人工智能 数学 统计 数学分析 物理 软件工程 天文
作者
Biao Yang,Guocheng Yan,Pin Wang,Ching-Yao Chan,Xiaofeng Liu,Yang Chen
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2002.01852
摘要

Forecasting pedestrian trajectories in dynamic scenes remains a critical problem in various applications, such as autonomous driving and socially aware robots. Such forecasting is challenging due to human-human and human-object interactions and future uncertainties caused by human randomness. Generative model-based methods handle future uncertainties by sampling a latent variable. However, few studies explored the generation of the latent variable. In this work, we propose the Trajectory Predictor with Pseudo Oracle (TPPO), which is a generative model-based trajectory predictor. The first pseudo oracle is pedestrians' moving directions, and the second one is the latent variable estimated from ground truth trajectories. A social attention module is used to aggregate neighbors' interactions based on the correlation between pedestrians' moving directions and future trajectories. This correlation is inspired by the fact that pedestrians' future trajectories are often influenced by pedestrians in front. A latent variable predictor is proposed to estimate latent variable distributions from observed and ground-truth trajectories. Moreover, the gap between these two distributions is minimized during training. Therefore, the latent variable predictor can estimate the latent variable from observed trajectories to approximate that estimated from ground-truth trajectories. We compare the performance of TPPO with related methods on several public datasets. Results demonstrate that TPPO outperforms state-of-the-art methods with low average and final displacement errors. The ablation study shows that the prediction performance will not dramatically decrease as sampling times decline during tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
妮子发布了新的社区帖子
6秒前
阿乐完成签到 ,获得积分10
11秒前
lily给ZJakariae的求助进行了留言
12秒前
24秒前
26秒前
29秒前
小o发布了新的文献求助10
32秒前
40秒前
karstbing完成签到,获得积分10
41秒前
48秒前
56秒前
lily完成签到,获得积分10
57秒前
上官若男应助妮子采纳,获得30
1分钟前
共享精神应助小o采纳,获得10
1分钟前
1分钟前
1分钟前
Arron完成签到,获得积分10
1分钟前
1分钟前
汤317完成签到,获得积分10
1分钟前
yuzuiris完成签到 ,获得积分10
1分钟前
1分钟前
Estrella发布了新的文献求助10
1分钟前
1121完成签到 ,获得积分10
1分钟前
Estrella完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助zy采纳,获得10
1分钟前
Zongxin应助千早爱音采纳,获得100
1分钟前
1分钟前
ding应助托塔大王采纳,获得10
2分钟前
二三语逢山外山完成签到 ,获得积分10
2分钟前
zy发布了新的文献求助10
2分钟前
2分钟前
zy完成签到,获得积分10
2分钟前
2分钟前
我不到啊完成签到 ,获得积分10
2分钟前
2分钟前
重庆森林完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595676
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818069
捐赠科研通 4651636
什么是DOI,文献DOI怎么找? 2535574
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754