TPPO: A Novel Trajectory Predictor with Pseudo Oracle

潜变量 弹道 甲骨文公司 变量(数学) 计算机科学 随机性 基本事实 潜变量模型 机器学习 人工智能 数学 统计 天文 软件工程 物理 数学分析
作者
Biao Yang,Guocheng Yan,Pin Wang,Ching-Yao Chan,Xiaofeng Liu,Yang Chen
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2002.01852
摘要

Forecasting pedestrian trajectories in dynamic scenes remains a critical problem in various applications, such as autonomous driving and socially aware robots. Such forecasting is challenging due to human-human and human-object interactions and future uncertainties caused by human randomness. Generative model-based methods handle future uncertainties by sampling a latent variable. However, few studies explored the generation of the latent variable. In this work, we propose the Trajectory Predictor with Pseudo Oracle (TPPO), which is a generative model-based trajectory predictor. The first pseudo oracle is pedestrians' moving directions, and the second one is the latent variable estimated from ground truth trajectories. A social attention module is used to aggregate neighbors' interactions based on the correlation between pedestrians' moving directions and future trajectories. This correlation is inspired by the fact that pedestrians' future trajectories are often influenced by pedestrians in front. A latent variable predictor is proposed to estimate latent variable distributions from observed and ground-truth trajectories. Moreover, the gap between these two distributions is minimized during training. Therefore, the latent variable predictor can estimate the latent variable from observed trajectories to approximate that estimated from ground-truth trajectories. We compare the performance of TPPO with related methods on several public datasets. Results demonstrate that TPPO outperforms state-of-the-art methods with low average and final displacement errors. The ablation study shows that the prediction performance will not dramatically decrease as sampling times decline during tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助慕子采纳,获得10
1秒前
1秒前
1秒前
L龙发布了新的文献求助10
2秒前
2秒前
善学以致用应助sunwending采纳,获得10
2秒前
东郭秋凌完成签到,获得积分10
2秒前
胤宸完成签到,获得积分10
3秒前
4秒前
4秒前
hohokuz完成签到,获得积分20
4秒前
一切顺遂应助Adian采纳,获得100
4秒前
4秒前
April发布了新的文献求助20
5秒前
Huaiman发布了新的文献求助10
6秒前
科研通AI5应助转角一起走采纳,获得20
6秒前
蛋炒饭完成签到,获得积分10
7秒前
执着完成签到,获得积分10
7秒前
研友_ED5GK发布了新的文献求助10
7秒前
8秒前
绿麦盲区完成签到,获得积分10
8秒前
Yvonne发布了新的文献求助10
8秒前
9秒前
9秒前
minghanl完成签到,获得积分10
10秒前
zhaomr发布了新的文献求助10
10秒前
科目三应助pbf采纳,获得20
11秒前
11秒前
11秒前
same完成签到,获得积分10
12秒前
科研通AI5应助俭朴夜雪采纳,获得30
12秒前
读研好难发布了新的文献求助10
13秒前
Adian完成签到,获得积分10
14秒前
Huaiman完成签到,获得积分10
14秒前
OvO完成签到,获得积分10
14秒前
expuery完成签到,获得积分10
14秒前
sunwending发布了新的文献求助10
14秒前
蒋时晏应助Lam采纳,获得30
15秒前
充电宝应助西子阳采纳,获得10
16秒前
OvO发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762