Structure-tunable supraparticle assemblies of hollow cupric oxide sheathed with nanographenes

材料科学 纳米颗粒 化学工程 氧化物 阳离子聚合 纳米技术 纳米复合材料 电阻率和电导率 石墨烯 聚电解质 纳米尺度 聚合物 高分子化学 复合材料 冶金 电气工程 工程类
作者
Minsu Gu,Woo-ram Lee,Minkyung Kim,Jiwoong Kang,Jae Sung Lee,Levi T. Thompson,Byeong‐Su Kim
出处
期刊:Nanoscale advances [The Royal Society of Chemistry]
卷期号:2 (3): 1236-1244 被引量:5
标识
DOI:10.1039/d0na00031k
摘要

Self-assembled supraparticles (SPs), a secondary structure of clustered nanoparticles, have attracted considerable interest owing to their highly tunable structure, composition, and morphology from their primary nanoparticle constituents. In this study, hierarchically assembled hollow Cu2O SPs were prepared using a cationic polyelectrolyte poly(diallyl dimethylammonium chloride) (PDDA) during the formation of Cu2O nanoparticles. The concentration-dependent structural transformation of PDDA from linear chains to assembled droplets plays a crucial role in forming a hollow colloidal template, affording the self-assembly of Cu2O nanoparticles as a secondary surfactant. The use of the positively charged PDDA also affords negatively charged nanoscale graphene oxide (NGO), an electrical and mechanical supporter to uniformly coat the surface of the hollow Cu2O SPs. Subsequent thermal treatment to enhance the electrical conductivity of NGO within the NGO/Cu2O SPs allows for the concomitant phase transformation of Cu2O to CuO, affording reduced NGO/CuO (RNGO/CuO) SPs. The uniquely structured hollow RNGO/CuO SPs achieve improved electrochemical properties by providing enhanced electrical conductivity and electroactive surface area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛哦啊发布了新的文献求助10
刚刚
zzzzzk发布了新的文献求助10
刚刚
刚刚
lalala发布了新的文献求助10
1秒前
三里墩头应助oldlee采纳,获得20
1秒前
1秒前
iNk应助西安小小朱采纳,获得10
1秒前
CodeCraft应助西安小小朱采纳,获得10
1秒前
无花果应助爱学习的小迟采纳,获得10
2秒前
哭泣的映寒完成签到 ,获得积分10
2秒前
xls完成签到,获得积分10
2秒前
2秒前
故意的傲玉应助圈圈采纳,获得10
2秒前
3秒前
522完成签到,获得积分10
3秒前
3秒前
kbj发布了新的文献求助10
3秒前
4秒前
老西瓜发布了新的文献求助10
4秒前
人各有痣完成签到,获得积分10
4秒前
后知后觉发布了新的文献求助10
4秒前
xiaoxiao发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
英姑应助哈哈呀采纳,获得10
6秒前
6秒前
hurry完成签到,获得积分10
6秒前
Hungrylunch应助陈玉婷采纳,获得20
6秒前
领导范儿应助hu970采纳,获得10
7秒前
new_vision发布了新的文献求助10
7秒前
拼搏翠桃完成签到,获得积分10
8秒前
糖糖科研顺利呀完成签到 ,获得积分10
8秒前
8秒前
阿秋完成签到,获得积分10
8秒前
Pangsj发布了新的文献求助10
9秒前
hhh发布了新的文献求助10
9秒前
好运藏在善良里完成签到,获得积分10
9秒前
情怀应助奋斗映寒采纳,获得10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672