清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药物发现 机器学习 药品 2019年冠状病毒病(COVID-19) 人工智能 药物开发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 数据科学
作者
Deisy Morselli Gysi,Italo Faria do Valle,Marinka Zitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert-László Barabási
出处
期刊:arXiv: Molecular Networks 被引量:4
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vitamin完成签到 ,获得积分10
6秒前
耍酷平凡发布了新的文献求助30
6秒前
无悔完成签到 ,获得积分10
28秒前
大医仁心完成签到 ,获得积分10
48秒前
聪明的云完成签到 ,获得积分10
1分钟前
稻子完成签到 ,获得积分10
1分钟前
dinglingling完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Arthur Zhu完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
熊猫胖胖WITH超人完成签到,获得积分20
3分钟前
4分钟前
耍酷平凡发布了新的文献求助10
4分钟前
4分钟前
ewxf2001发布了新的文献求助10
4分钟前
4分钟前
花园里的蒜完成签到 ,获得积分0
4分钟前
荔枝发布了新的文献求助20
4分钟前
ewxf2001完成签到,获得积分10
4分钟前
juan完成签到 ,获得积分10
4分钟前
cxwcn完成签到 ,获得积分10
4分钟前
Hiram完成签到,获得积分10
4分钟前
4分钟前
wmj完成签到,获得积分10
5分钟前
Ava应助落寞的又菡采纳,获得10
5分钟前
刚子完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
jiejie完成签到,获得积分10
6分钟前
6分钟前
沿途有你完成签到 ,获得积分10
7分钟前
耍酷平凡完成签到,获得积分10
7分钟前
荔枝发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582561
求助须知:如何正确求助?哪些是违规求助? 4000248
关于积分的说明 12382295
捐赠科研通 3675315
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108