Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药物发现 机器学习 药品 2019年冠状病毒病(COVID-19) 人工智能 药物开发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 数据科学
作者
Deisy Morselli Gysi,Italo Faria do Valle,Marinka Zitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert-László Barabási
出处
期刊:arXiv: Molecular Networks 被引量:4
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皇帝的床帘应助wwww采纳,获得30
2秒前
3秒前
小脸发布了新的文献求助10
4秒前
小学生发布了新的文献求助10
4秒前
小二郎应助温暖的碧彤采纳,获得10
5秒前
6秒前
6秒前
田様应助LLLL采纳,获得10
7秒前
叶子完成签到,获得积分10
7秒前
彭于晏应助YY采纳,获得10
8秒前
L061114完成签到 ,获得积分10
8秒前
8秒前
8秒前
caicai发布了新的文献求助10
9秒前
flora发布了新的文献求助10
11秒前
坚强的代曼完成签到,获得积分10
11秒前
赘婿应助张兮兮采纳,获得10
12秒前
12秒前
Rohee发布了新的文献求助10
12秒前
大布发布了新的文献求助20
13秒前
从容芮应助科研通管家采纳,获得10
14秒前
甜甜玫瑰应助科研通管家采纳,获得10
14秒前
从容芮应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得150
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
从容芮应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
15秒前
从容芮应助科研通管家采纳,获得10
15秒前
甜甜玫瑰应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
feb完成签到,获得积分10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
从容芮应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
甜甜玫瑰应助科研通管家采纳,获得10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112