Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药物发现 机器学习 药品 2019年冠状病毒病(COVID-19) 人工智能 药物开发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 数据科学
作者
Deisy Morselli Gysi,Italo Faria do Valle,Marinka Zitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert-László Barabási
出处
期刊:arXiv: Molecular Networks 被引量:4
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
collin关注了科研通微信公众号
刚刚
1秒前
周大悦完成签到 ,获得积分20
2秒前
鳗鱼衣完成签到 ,获得积分10
2秒前
2秒前
天天快乐应助鄂老三采纳,获得10
3秒前
小羊完成签到 ,获得积分10
3秒前
fuwei完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
原本发布了新的文献求助10
4秒前
炙热南露发布了新的文献求助30
4秒前
无花果应助孤独的心锁采纳,获得10
4秒前
JoeyCho完成签到,获得积分20
6秒前
科研通AI5应助盐植物采纳,获得10
6秒前
感谢znq051210转发科研通微信,获得积分50
7秒前
猪猪hero发布了新的文献求助10
7秒前
8秒前
快乐的胖子应助susu采纳,获得30
10秒前
我是老大应助彩虹糖采纳,获得10
11秒前
科研通AI5应助xxxxc采纳,获得10
12秒前
yuqiu发布了新的文献求助30
12秒前
12秒前
木土土完成签到,获得积分10
12秒前
ding应助攀攀采纳,获得10
12秒前
感谢Shylie转发科研通微信,获得积分50
12秒前
麦益颖完成签到,获得积分10
13秒前
在人中发布了新的文献求助10
13秒前
dandan完成签到 ,获得积分20
15秒前
15秒前
16秒前
17秒前
17秒前
浮游应助三二采纳,获得10
18秒前
18秒前
cantaloupe完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
111完成签到,获得积分10
19秒前
负责惜文完成签到 ,获得积分10
19秒前
科研通AI6应助cyt9999采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316