已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药物发现 机器学习 药品 2019年冠状病毒病(COVID-19) 人工智能 药物开发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 数据科学
作者
Deisy Morselli Gysi,Italo Faria do Valle,Marinka Zitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert-László Barabási
出处
期刊:arXiv: Molecular Networks 被引量:4
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crazyjmj完成签到,获得积分10
刚刚
1秒前
田田完成签到 ,获得积分10
2秒前
2秒前
2秒前
CipherSage应助xtt121采纳,获得10
4秒前
瓜尔佳发布了新的文献求助10
4秒前
杨慧迪完成签到,获得积分10
4秒前
呆二龙完成签到 ,获得积分10
4秒前
ceeray23发布了新的文献求助20
5秒前
执着从筠发布了新的文献求助30
5秒前
WGR12138完成签到 ,获得积分10
5秒前
绾妤完成签到 ,获得积分0
6秒前
超帅慕晴完成签到,获得积分10
7秒前
7秒前
xxfsx应助warmen采纳,获得10
9秒前
Rory完成签到 ,获得积分10
10秒前
崇林同学完成签到,获得积分10
11秒前
浩whu完成签到,获得积分10
11秒前
11秒前
风趣的梦露完成签到 ,获得积分10
12秒前
15秒前
PEKOEA发布了新的文献求助10
15秒前
17秒前
屠俊豪发布了新的文献求助10
17秒前
18秒前
赫如冰完成签到 ,获得积分10
18秒前
topsun完成签到,获得积分10
21秒前
zzzz完成签到,获得积分10
23秒前
浮游应助ceeray23采纳,获得20
24秒前
飞翔的梦完成签到,获得积分10
24秒前
luocan完成签到,获得积分10
26秒前
烟花应助周俊磊采纳,获得10
27秒前
29秒前
科研通AI2S应助小白菜采纳,获得10
29秒前
追寻元菱应助ceeray23采纳,获得20
30秒前
cdc完成签到 ,获得积分10
31秒前
斯文的访烟完成签到,获得积分10
31秒前
李健的小迷弟应助ST采纳,获得10
32秒前
朝气完成签到,获得积分10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209697
求助须知:如何正确求助?哪些是违规求助? 4386894
关于积分的说明 13661870
捐赠科研通 4246307
什么是DOI,文献DOI怎么找? 2329694
邀请新用户注册赠送积分活动 1327444
关于科研通互助平台的介绍 1279811