Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药物发现 机器学习 药品 2019年冠状病毒病(COVID-19) 人工智能 药物开发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 数据科学
作者
Deisy Morselli Gysi,Italo Faria do Valle,Marinka Zitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert-László Barabási
出处
期刊:arXiv: Molecular Networks 被引量:4
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈怼怼完成签到,获得积分10
2秒前
xudongmei完成签到,获得积分10
4秒前
Megan完成签到,获得积分10
4秒前
白月光完成签到,获得积分10
4秒前
ding应助水门采纳,获得30
4秒前
6秒前
韭菜盒子完成签到,获得积分20
6秒前
hi_traffic完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Keyuuu30完成签到,获得积分0
7秒前
树懒完成签到 ,获得积分10
8秒前
木偶完成签到 ,获得积分10
8秒前
ZhengSyHoe发布了新的文献求助10
10秒前
bb完成签到,获得积分10
11秒前
苦行僧完成签到 ,获得积分10
11秒前
cistronic完成签到,获得积分10
12秒前
dd完成签到,获得积分10
12秒前
等待断秋完成签到,获得积分10
13秒前
大头完成签到 ,获得积分10
13秒前
chem完成签到,获得积分10
13秒前
文心同学完成签到,获得积分0
14秒前
WZH完成签到 ,获得积分10
16秒前
16秒前
木康薛完成签到,获得积分10
17秒前
小凯同学完成签到 ,获得积分10
18秒前
古藤完成签到 ,获得积分10
19秒前
yy完成签到,获得积分10
20秒前
陈老太完成签到 ,获得积分10
20秒前
Clover04完成签到,获得积分10
20秒前
钱念波发布了新的文献求助10
21秒前
Shine完成签到,获得积分10
21秒前
迷路的懒熊完成签到,获得积分10
21秒前
kk2024完成签到,获得积分10
24秒前
MM完成签到 ,获得积分10
24秒前
24秒前
Nicole完成签到 ,获得积分10
24秒前
const完成签到,获得积分10
25秒前
独钓寒江雪完成签到 ,获得积分10
26秒前
独特的大有完成签到 ,获得积分10
27秒前
韭菜发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008834
求助须知:如何正确求助?哪些是违规求助? 3548485
关于积分的说明 11298899
捐赠科研通 3283114
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220