材料科学
电解质
离子电导率
快离子导体
化学工程
电化学
电化学窗口
电导率
复合数
离子键合
锂(药物)
离子
电极
复合材料
物理化学
有机化学
化学
内分泌学
工程类
医学
作者
Hao Chen,David Adekoya,Luke Hencz,Jun Ma,Su Chen,Cheng Yan,Huijun Zhao,Guanglei Cui,Shanqing Zhang
标识
DOI:10.1002/aenm.202000049
摘要
Abstract Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO 2 (Ca–CeO 2 ) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO 2 /LiTFSI/PEO. Ca–CeO 2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10 −4 S cm −1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO 2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO 2 /LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI