Why are some Chinese firms failing in the US capital markets? A machine learning approach

首次公开发行 预测能力 业务 股票市场 资本市场 逻辑回归 财务 机器学习 计算机科学 生物 认识论 哲学 古生物学
作者
Gönül Çolak,Mengchuan Fu,Iftekhar Hasan
出处
期刊:Pacific-basin Finance Journal [Elsevier]
卷期号:61: 101331-101331 被引量:10
标识
DOI:10.1016/j.pacfin.2020.101331
摘要

Abstract We study the market performance of Chinese companies listed in the U.S. stock exchanges using machine learning methods. Predicting the market performance of U.S. listed Chinese firms is a challenging task due to the scarcity of data and the large set of unknown predictors involved in the process. We examine the market performance from three different angles: the underpricing (or short-term market phenomena), the post-issuance stock underperformance (or long-term market phenomena), and the regulatory delistings (IPO failure risk). Using machine learning techniques that can better handle various data problems, we improve on the predictive power of traditional estimations, such as OLS and logit. Our predictive model highlights some novel findings: failed Chinese companies have chosen unreliable U.S. intermediaries when going public, and they tend to suffer from more severe owners-related agency problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
1秒前
桐桐应助小智采纳,获得10
1秒前
九川完成签到,获得积分10
1秒前
混子完成签到,获得积分10
1秒前
1秒前
2秒前
Wang完成签到,获得积分10
2秒前
星辰大海应助Ll采纳,获得10
2秒前
Jasper应助妮儿采纳,获得10
3秒前
tododoto完成签到,获得积分10
3秒前
3秒前
淙淙柔水完成签到,获得积分0
3秒前
杳鸢应助mc1220采纳,获得10
3秒前
rosa完成签到,获得积分10
3秒前
郑小七发布了新的文献求助10
4秒前
Tianxu Li完成签到,获得积分10
5秒前
5秒前
九川发布了新的文献求助10
6秒前
Lucas应助无限的隶采纳,获得10
6秒前
胡雅琴完成签到,获得积分10
6秒前
sakurai完成签到,获得积分10
7秒前
清歌扶酒关注了科研通微信公众号
7秒前
二尖瓣后叶举报ww求助涉嫌违规
7秒前
烟花应助轻松笙采纳,获得10
7秒前
沉默凡桃完成签到,获得积分10
8秒前
8秒前
luuuuuing发布了新的文献求助30
8秒前
啦啦啦完成签到,获得积分10
8秒前
小可发布了新的文献求助10
8秒前
9秒前
LKGG完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
周士乐发布了新的文献求助10
10秒前
Sunshine发布了新的文献求助10
10秒前
呼吸之野完成签到,获得积分10
11秒前
害怕的小懒虫完成签到,获得积分10
11秒前
思源应助Nefelibata采纳,获得10
12秒前
妮儿发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759