Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities

现状 可持续能源 环境经济学 可持续发展 可再生能源 自然资源经济学 工程类 产业组织 经济 能量(信号处理) 政治学 业务 市场经济 电气工程 法学 统计 数学
作者
Tanveer Ahmad,Dongdong Zhang,Chao Huang,Hongcai Zhang,Ningyi Dai,Yonghua Song,Huanxin Chen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:289: 125834-125834 被引量:691
标识
DOI:10.1016/j.jclepro.2021.125834
摘要

The energy industry is at a crossroads. Digital technological developments have the potential to change our energy supply, trade, and consumption dramatically. The new digitalization model is powered by the artificial intelligence (AI) technology. The integration of energy supply, demand, and renewable sources into the power grid will be controlled autonomously by smart software that optimizes decision-making and operations. AI will play an integral role in achieving this goal. This study focuses on the use of AI techniques in the energy sector. This study aims to present a realistic baseline that allows researchers and readers to compare their AI efforts, ambitions, new state-of-the-art applications, challenges, and global roles in policymaking. We covered three major aspects, including: i) the use of AI in solar and hydrogen power generation; (ii) the use of AI in supply and demand management control; and (iii) recent advances in AI technology. This study explored how AI techniques outperform traditional models in controllability, big data handling, cyberattack prevention, smart grid, IoT, robotics, energy efficiency optimization, predictive maintenance control, and computational efficiency. Big data, the development of a machine learning model, and AI will play an important role in the future energy market. Our study’s findings show that AI is becoming a key enabler of a complex, new and data-related energy industry, providing a key magic tool to increase operational performance and efficiency in an increasingly cut-throat environment. As a result, the energy industry, utilities, power system operators, and independent power producers may need to focus more on AI technologies if they want meaningful results to remain competitive. New competitors, new business strategies, and a more active approach to customers would require informed and flexible regulatory engagement with the associated complexities of customer safety, privacy, and information security. Given the pace of development in information technology, AI and data analysis, regulatory approvals for new services and products in the new Era of digital energy markets can be enforced as quickly and efficiently as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力吐司应助星星采纳,获得10
1秒前
1秒前
LI完成签到,获得积分10
3秒前
小春发布了新的文献求助10
5秒前
二则完成签到 ,获得积分10
5秒前
夜翼发布了新的文献求助10
5秒前
童话艺术佳完成签到,获得积分10
6秒前
6秒前
7秒前
小猫爱吃鱼饼完成签到,获得积分10
7秒前
朝圣者发布了新的文献求助10
7秒前
9秒前
10秒前
10秒前
caohuijun发布了新的文献求助200
11秒前
所所应助liyf采纳,获得10
11秒前
99完成签到,获得积分10
13秒前
Akim应助夜翼采纳,获得10
14秒前
HL完成签到,获得积分10
14秒前
暮桉完成签到,获得积分10
14秒前
热情无春发布了新的文献求助10
15秒前
高大代容发布了新的文献求助10
15秒前
qrg发布了新的文献求助10
16秒前
Sofia完成签到 ,获得积分0
17秒前
顾矜应助冷艳的立果采纳,获得10
17秒前
18秒前
19秒前
20秒前
科研小强发布了新的文献求助10
21秒前
21秒前
Xxc应助yema采纳,获得10
22秒前
Betty完成签到 ,获得积分10
23秒前
liyf发布了新的文献求助10
24秒前
小张医生发布了新的文献求助10
25秒前
25秒前
我啊完成签到 ,获得积分10
25秒前
26秒前
26秒前
lydy1993完成签到,获得积分10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557447
求助须知:如何正确求助?哪些是违规求助? 3132517
关于积分的说明 9398020
捐赠科研通 2832685
什么是DOI,文献DOI怎么找? 1556993
邀请新用户注册赠送积分活动 727051
科研通“疑难数据库(出版商)”最低求助积分说明 716184