A novel nomogram predicting lymph node invasion among patients with prostate cancer: The importance of extracapsular extension at multiparametric magnetic resonance imaging

列线图 医学 前列腺切除术 前列腺癌 逻辑回归 磁共振成像 接收机工作特性 淋巴结 泌尿科 解剖(医学) 放射科 核医学 肿瘤科 内科学 癌症
作者
Ettore Di Trapani,Stefano Luzzago,Giulia Peveri,Michele Catellani,Matteo Ferro,Giovanni Cordima,F.A. Mistretta,Roberto Bianchi,Guido Cozzi,S. Alessi,Deliu Victor Matei,Vincenzo Bagnardi,Giuseppe Petralia,Gennaro Musi,Ottavio De Cobelli
出处
期刊:Urologic Oncology-seminars and Original Investigations [Elsevier]
卷期号:39 (7): 431.e15-431.e22 被引量:15
标识
DOI:10.1016/j.urolonc.2020.11.040
摘要

To develop a novel risk tool that allows the prediction of lymph node invasion (LNI) among patients with prostate cancer (PCa) treated with robot-assisted radical prostatectomy (RARP) and extended pelvic lymph node dissection (ePLND).We retrospectively identified 742 patients treated with RARP + ePLND at a single center between 2012 and 2018. All patients underwent multiparametric magnetic resonance imaging (mpMRI) and were diagnosed with targeted biopsies. First, the nomogram published by Briganti et al. was validated in our cohort. Second, three novel multivariable logistic regression models predicting LNI were developed: (1) a complete model fitted with PSA, ISUP grade groups, percentage of positive cores (PCP), extracapsular extension (ECE), and Prostate Imaging Reporting and Data System (PI-RADS) score; (2) a simplified model where ECE score was not included (model 1); and (3) a simplified model where PI-RADS score was not included (model 2). The predictive accuracy of the models was assessed with the receiver operating characteristic-derived area under the curve (AUC). Calibration plots and decision curve analyses were used.Overall, 149 patients (20%) had LNI. In multivariable logistic regression models, PSA (OR: 1.03; P= 0.001), ISUP grade groups (OR: 1.33; P= 0.001), PCP (OR: 1.01; P= 0.01), and ECE score (ECE 4 vs. 3 OR: 2.99; ECE 5 vs. 3 OR: 6.97; P< 0.001) were associated with higher rates of LNI. The AUC of the Briganti et al. model was 74%. Conversely, the AUC of model 1 vs. model 2 vs. complete model was, respectively, 78% vs. 81% vs. 81%. Simplified model 1 (ECE score only) was then chosen as the best performing model. A nomogram to calculate the individual probability of LNI, based on model 1 was created. Setting our cut-off at 5% we missed only 2.6% of LNI patients.We developed a novel nomogram that combines PSA, ISUP grade groups, PCP, and mpMRI-derived ECE score to predict the probability of LNI at final pathology in RARP candidates. The application of a nomogram derived cut-off of 5% allows to avoid a consistent number of ePLND procedures, missing only 2.6% of LNI patients. External validation of our model is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助melodyezi采纳,获得10
刚刚
蓝色条纹衫完成签到 ,获得积分10
刚刚
1秒前
1秒前
kingwhitewing发布了新的文献求助10
1秒前
灵巧汉堡完成签到 ,获得积分10
2秒前
SciGPT应助幸福胡萝卜采纳,获得10
3秒前
积极晓兰完成签到,获得积分10
3秒前
3秒前
离子电池完成签到,获得积分10
3秒前
小熊饼干完成签到,获得积分10
3秒前
Ryuichi完成签到 ,获得积分10
4秒前
冷静的平安完成签到,获得积分20
4秒前
周士乐完成签到,获得积分10
4秒前
juan完成签到,获得积分10
5秒前
cheeselemon182完成签到,获得积分10
5秒前
英勇凝旋完成签到,获得积分10
6秒前
HopeStar发布了新的文献求助10
6秒前
6秒前
石幻枫完成签到 ,获得积分10
7秒前
生动盼秋发布了新的文献求助10
7秒前
韭黄发布了新的文献求助10
7秒前
Eliauk完成签到,获得积分10
8秒前
小野狼完成签到,获得积分10
8秒前
威武诺言完成签到,获得积分10
8秒前
fengye发布了新的文献求助10
8秒前
李东东完成签到 ,获得积分10
8秒前
Zn应助hulin_zjxu采纳,获得10
8秒前
海鸥海鸥发布了新的文献求助50
9秒前
小乔要努力变强完成签到,获得积分10
9秒前
YANG完成签到 ,获得积分10
9秒前
9秒前
在水一方应助马保国123采纳,获得10
9秒前
Jovid完成签到,获得积分10
10秒前
建成完成签到,获得积分10
10秒前
爆米花应助落落采纳,获得10
10秒前
852应助liu123479采纳,获得20
11秒前
11秒前
无情念之发布了新的文献求助10
11秒前
lilac应助Rocky采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759