A novel nomogram predicting lymph node invasion among patients with prostate cancer: The importance of extracapsular extension at multiparametric magnetic resonance imaging

列线图 医学 前列腺切除术 前列腺癌 逻辑回归 磁共振成像 接收机工作特性 淋巴结 泌尿科 解剖(医学) 放射科 核医学 肿瘤科 内科学 癌症
作者
Ettore Di Trapani,Stefano Luzzago,Giulia Peveri,Michele Catellani,Matteo Ferro,Giovanni Cordima,F.A. Mistretta,Roberto Bianchi,Guido Cozzi,S. Alessi,Deliu Victor Matei,Vincenzo Bagnardi,Giuseppe Petralia,Gennaro Musi,Ottavio De Cobelli
出处
期刊:Urologic Oncology-seminars and Original Investigations [Elsevier]
卷期号:39 (7): 431.e15-431.e22 被引量:15
标识
DOI:10.1016/j.urolonc.2020.11.040
摘要

To develop a novel risk tool that allows the prediction of lymph node invasion (LNI) among patients with prostate cancer (PCa) treated with robot-assisted radical prostatectomy (RARP) and extended pelvic lymph node dissection (ePLND).We retrospectively identified 742 patients treated with RARP + ePLND at a single center between 2012 and 2018. All patients underwent multiparametric magnetic resonance imaging (mpMRI) and were diagnosed with targeted biopsies. First, the nomogram published by Briganti et al. was validated in our cohort. Second, three novel multivariable logistic regression models predicting LNI were developed: (1) a complete model fitted with PSA, ISUP grade groups, percentage of positive cores (PCP), extracapsular extension (ECE), and Prostate Imaging Reporting and Data System (PI-RADS) score; (2) a simplified model where ECE score was not included (model 1); and (3) a simplified model where PI-RADS score was not included (model 2). The predictive accuracy of the models was assessed with the receiver operating characteristic-derived area under the curve (AUC). Calibration plots and decision curve analyses were used.Overall, 149 patients (20%) had LNI. In multivariable logistic regression models, PSA (OR: 1.03; P= 0.001), ISUP grade groups (OR: 1.33; P= 0.001), PCP (OR: 1.01; P= 0.01), and ECE score (ECE 4 vs. 3 OR: 2.99; ECE 5 vs. 3 OR: 6.97; P< 0.001) were associated with higher rates of LNI. The AUC of the Briganti et al. model was 74%. Conversely, the AUC of model 1 vs. model 2 vs. complete model was, respectively, 78% vs. 81% vs. 81%. Simplified model 1 (ECE score only) was then chosen as the best performing model. A nomogram to calculate the individual probability of LNI, based on model 1 was created. Setting our cut-off at 5% we missed only 2.6% of LNI patients.We developed a novel nomogram that combines PSA, ISUP grade groups, PCP, and mpMRI-derived ECE score to predict the probability of LNI at final pathology in RARP candidates. The application of a nomogram derived cut-off of 5% allows to avoid a consistent number of ePLND procedures, missing only 2.6% of LNI patients. External validation of our model is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种桃老总完成签到,获得积分10
刚刚
1秒前
zddddd发布了新的文献求助10
1秒前
Lipyoung发布了新的文献求助10
1秒前
1秒前
神经蛙完成签到,获得积分10
2秒前
帅帅子发布了新的文献求助10
2秒前
MasterE完成签到,获得积分10
2秒前
3秒前
锦2022完成签到,获得积分20
3秒前
4秒前
呱呱发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
12秒前
宾师傅完成签到 ,获得积分10
12秒前
12秒前
Huanghong发布了新的文献求助10
13秒前
汉堡包应助璇儿采纳,获得10
13秒前
跳跃鱼发布了新的文献求助10
13秒前
xuqiansd发布了新的文献求助10
14秒前
00完成签到,获得积分10
14秒前
风过大泽发布了新的文献求助10
15秒前
15秒前
七月完成签到 ,获得积分10
16秒前
luermei完成签到,获得积分10
17秒前
zzzzz完成签到,获得积分20
17秒前
顺心的羊发布了新的文献求助10
17秒前
等等小ur发布了新的文献求助10
18秒前
18秒前
现实的又夏发布了新的文献求助100
19秒前
Hosea完成签到 ,获得积分10
20秒前
21秒前
风和日丽完成签到,获得积分10
21秒前
xuqiansd完成签到,获得积分10
22秒前
芋泥波波完成签到,获得积分10
23秒前
璇儿完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122944
求助须知:如何正确求助?哪些是违规求助? 2773329
关于积分的说明 7717530
捐赠科研通 2428935
什么是DOI,文献DOI怎么找? 1290054
科研通“疑难数据库(出版商)”最低求助积分说明 621705
版权声明 600203