Ligand-based pharmacophore modeling of TNF-α to design novel inhibitors using virtual screening and molecular dynamics

药效团 虚拟筛选 生物信息学 化学 计算生物学 对接(动物) 分子动力学 肿瘤坏死因子α 配体(生物化学) 化学数据库 药理学 生物化学 医学 生物 受体 计算化学 免疫学 护理部 有机化学 基因
作者
Dhananjay Jade,Rajan Pandey,Rakesh Kumar,Dinesh Gupta
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:40 (4): 1702-1718 被引量:10
标识
DOI:10.1080/07391102.2020.1831962
摘要

Tumor necrosis factor-α (TNF-α) is one of the promising targets for treating inflammatory (Crohn disease, psoriasis, psoriatic arthritis, rheumatoid arthritis) and various other diseases. Commercially available TNF-α inhibitors are associated with several risks and limitations. In the present study, we have identified small TNF-α inhibitors using in silico approaches, namely pharmacophore modeling, virtual screening, molecular docking, molecular dynamics simulation and free binding energy calculations. The study yielded better and potent hits that bind to TNF-α with significant affinity. The best pharmacophore model generated using LigandScout has an efficient hit rate and Area Under the operating Curve. High throughput virtual screening of SPECS database molecules against crystal structure of TNF-α protein, coupled with physicochemical filtration, PAINS test. Virtual hit compounds used for molecular docking enabled the identification of 20 compounds with better binding energies when compared with previously known TNF-α inhibitors. MD simulation analysis on 20 virtual identified hits showed that ligand binding with TNF-α protein is stable and protein-ligand conformation remains unchanged. Further, 16 compounds passed ADMET analysis suggesting these identified hit compounds are suitable for designing a future class of potent TNF-α inhibitors.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥完成签到,获得积分10
1秒前
科研通AI6应助丰富的雪糕采纳,获得10
1秒前
王旭一泓发布了新的文献求助10
1秒前
Orange应助nimeng123采纳,获得10
2秒前
杨悦发布了新的文献求助10
3秒前
5秒前
受伤书文完成签到 ,获得积分10
5秒前
三斤发布了新的文献求助10
5秒前
单纯晋鹏完成签到,获得积分10
6秒前
6秒前
求知发布了新的文献求助10
7秒前
纪间发布了新的文献求助10
8秒前
Sandm完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
zengdan发布了新的文献求助10
10秒前
香蕉觅云应助谢同学采纳,获得10
10秒前
11秒前
jiaojaioo完成签到,获得积分10
11秒前
碧松桥发布了新的文献求助20
12秒前
moonlight完成签到,获得积分10
12秒前
杨悦完成签到,获得积分10
13秒前
14秒前
14秒前
Driscoll完成签到 ,获得积分10
14秒前
不羁发布了新的文献求助10
15秒前
华仔应助白衣修身采纳,获得10
15秒前
深情安青应助chenziibin采纳,获得10
15秒前
jdjd发布了新的文献求助10
15秒前
明理若南发布了新的文献求助20
15秒前
Jaho完成签到,获得积分10
15秒前
16秒前
活力的如冬完成签到,获得积分10
16秒前
赤橙完成签到,获得积分10
16秒前
nikita完成签到,获得积分10
17秒前
王旭一泓完成签到,获得积分10
17秒前
汉堡包应助zengdan采纳,获得10
18秒前
七月夏栀完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633897
求助须知:如何正确求助?哪些是违规求助? 4029610
关于积分的说明 12467882
捐赠科研通 3715936
什么是DOI,文献DOI怎么找? 2050448
邀请新用户注册赠送积分活动 1082017
科研通“疑难数据库(出版商)”最低求助积分说明 964216