已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-Time Fruit Recognition and Grasping Estimation for Robotic Apple Harvesting

人工智能 RGB颜色模型 计算机科学 稳健性(进化) 计算机视觉 机器视觉 分割 姿势 过程(计算) 生物化学 基因 操作系统 化学
作者
Hanwen Kang,Hongyu Zhou,Xing Wang,Chao Chen
出处
期刊:Sensors [MDPI AG]
卷期号:20 (19): 5670-5670 被引量:130
标识
DOI:10.3390/s20195670
摘要

Robotic harvesting shows a promising aspect in future development of agricultural industry. However, there are many challenges which are still presented in the development of a fully functional robotic harvesting system. Vision is one of the most important keys among these challenges. Traditional vision methods always suffer from defects in accuracy, robustness, and efficiency in real implementation environments. In this work, a fully deep learning-based vision method for autonomous apple harvesting is developed and evaluated. The developed method includes a light-weight one-stage detection and segmentation network for fruit recognition and a PointNet to process the point clouds and estimate a proper approach pose for each fruit before grasping. Fruit recognition network takes raw inputs from RGB-D camera and performs fruit detection and instance segmentation on RGB images. The PointNet grasping network combines depth information and results from the fruit recognition as input and outputs the approach pose of each fruit for robotic arm execution. The developed vision method is evaluated on RGB-D image data which are collected from both laboratory and orchard environments. Robotic harvesting experiments in both indoor and outdoor conditions are also included to validate the performance of the developed harvesting system. Experimental results show that the developed vision method can perform highly efficient and accurate to guide robotic harvesting. Overall, the developed robotic harvesting system achieves 0.8 on harvesting success rate and cycle time is 6.5 seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
高高烙完成签到,获得积分10
2秒前
2秒前
852应助旺仔采纳,获得10
4秒前
4秒前
8R60d8应助科研胖子采纳,获得10
4秒前
研友_n0Dmwn发布了新的文献求助10
5秒前
动听的梦容完成签到,获得积分10
6秒前
立冬发布了新的文献求助10
6秒前
10秒前
zhangzhangzhang完成签到,获得积分10
10秒前
脑洞疼应助白青采纳,获得10
10秒前
11秒前
研友_n0Dmwn完成签到,获得积分10
12秒前
我爱学习完成签到 ,获得积分20
13秒前
pluto应助慈祥的翠桃采纳,获得30
14秒前
传奇3应助慈祥的翠桃采纳,获得10
14秒前
VDC应助慈祥的翠桃采纳,获得80
14秒前
14秒前
pluto应助慈祥的翠桃采纳,获得30
14秒前
慕青应助慈祥的翠桃采纳,获得30
14秒前
pluto应助慈祥的翠桃采纳,获得30
15秒前
隐形曼青应助慈祥的翠桃采纳,获得10
15秒前
隐形曼青应助慈祥的翠桃采纳,获得10
15秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
15秒前
pluto应助慈祥的翠桃采纳,获得30
15秒前
fifi完成签到,获得积分10
16秒前
16秒前
CHEN完成签到 ,获得积分10
16秒前
芳华如梦完成签到 ,获得积分10
16秒前
格物致知完成签到,获得积分10
17秒前
陶醉的又夏完成签到 ,获得积分10
18秒前
旺仔完成签到,获得积分20
18秒前
孙漂亮发布了新的文献求助30
18秒前
18秒前
cctv18应助BYN采纳,获得20
19秒前
22秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244560
求助须知:如何正确求助?哪些是违规求助? 2888296
关于积分的说明 8252294
捐赠科研通 2556717
什么是DOI,文献DOI怎么找? 1385204
科研通“疑难数据库(出版商)”最低求助积分说明 650041
邀请新用户注册赠送积分活动 626193