Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration

膜蒸馏 卤水 电渗析 纳滤 海水淡化 分离器(采油) 化学工程 化学 工艺工程 蒸馏 材料科学 色谱法 膜技术 有机化学 热力学 工程类 物理 生物化学
作者
Sang Hyun Park,Ji Hoon Kim,Sun Ju Moon,Jun Tae Jung,Ho Hyun Wang,Aamer Ali,Cejna Anna Quist-Jensen,Francesca Macedonio,Enrico Drioli,Young Moo Lee
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:598: 117683-117683 被引量:114
标识
DOI:10.1016/j.memsci.2019.117683
摘要

Herein, we introduce a novel membrane-based process for lithium recovery and compare it to the conventional solar evaporation followed by chemical precipitation process. Conventional technologies have limitations to meet the recent demand for massive lithium production due to several drawbacks of solar evaporation. Recently, in order to reduce the dependency of solar evaporation, several technologies have been proposed such as precipitation, ion-exchange, liquid-liquid extraction, adsorption, and electrodialysis. We suggest a novel membrane-based lithium recovery process by combining membrane distillation (MD) and nanofiltration (NF) to concentrate a brine solution containing lithium and to remove divalent ions. The proposed membrane-based process was demonstrated to concentrate 100 ppm lithium solution in artificial brine to 1200 ppm lithium solution within several days and exhibited up to 60 times higher water flux (22.5 L m−2 h−1) than that of solar evaporation (0.37 L m−2 h−1 at 30 °C and 0.56 L m−2 h−1 at 50 °C). Moreover, the NF process can suppress crystal formation to prevent process failure while alleviating the massive chemical usage of the conventional process. As a result, the proposed membrane-based process showed a possibility to utilize the low concentration of lithium brine with one-tenth of capital cost, process time, and foot-print of the conventional process, and represented a competitive operating cost with the conventional process which can be reduced further by harnessing the waste heat from the industrial plants and solar energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助务实的犀牛采纳,获得10
1秒前
追寻飞风完成签到,获得积分10
1秒前
wenli完成签到,获得积分10
2秒前
2秒前
3秒前
Schmoo完成签到,获得积分10
4秒前
6秒前
圆圆的脑袋应助涛浪采纳,获得10
7秒前
隐形曼青应助皮皮桂采纳,获得10
8秒前
凝子老师完成签到,获得积分10
8秒前
奶糖发布了新的文献求助30
8秒前
TORCH完成签到 ,获得积分10
10秒前
李健的小迷弟应助lin采纳,获得10
10秒前
10秒前
11秒前
TT发布了新的文献求助10
11秒前
奶糖完成签到,获得积分10
14秒前
丘比特应助浪迹天涯采纳,获得10
15秒前
17秒前
17秒前
虚幻白玉发布了新的文献求助10
18秒前
清客完成签到 ,获得积分10
18秒前
传奇3应助阳阳采纳,获得10
18秒前
20秒前
皮皮桂发布了新的文献求助10
20秒前
Hello应助无奈傲菡采纳,获得10
20秒前
故意的傲玉应助FENGHUI采纳,获得10
21秒前
22秒前
科研通AI5应助nextconnie采纳,获得10
23秒前
James完成签到,获得积分10
23秒前
24秒前
Lucas应助sun采纳,获得10
25秒前
KristenStewart完成签到,获得积分10
27秒前
过时的热狗完成签到,获得积分10
27秒前
点点完成签到,获得积分10
27秒前
Zxc发布了新的文献求助10
28秒前
涨芝士完成签到 ,获得积分10
29秒前
30秒前
无名欧文关注了科研通微信公众号
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849